995 resultados para absorption measurement
Resumo:
We have demonstrated the nonlinear absorption at 532 nm wavelength in an Au semi-continuous film (SF) resulting from smearing of the Fermi distribution and diffusion of conduction electrons into the substrate. The Au SF was irradiated by a pulsed laser with 8 ns pulse width at 532 nm in near resonance with the interband transition of the Au. We determined the temperature increase in the SF for different intensities by electrical measurement. We calculated the temperature increase by using a 1D heat transport equation; comparing the results of the calculation with measured values for the temperature increase, revealed the nonlinear absorption in the Au SF. We employed this deviation from linear behaviour to determine the nonlinear absorption coefficient.
Resumo:
We report a precise measurement of the hyperfine interval in the 2P(1/2) state of Li-7. The transition from the ground state (D-1 line) is accessed using a diode laser and the technique of saturated-absorption spectroscopy in hot Li vapor. The interval is measured by locking an acousto-optic modulator to the frequency difference between the two hyperfine peaks. The measured interval of 92.040(6) MHz is consistent with an earlier measurement reported by us using an atomic-beam spectrometer Das and Natarajan, J. Phys. B 41, 035001 (2008)]. The interval yields the magnetic dipole constant in the P-1/2 state as A = 46.047(3), which is discrepant from theoretical calculations by > 80 kHz.
Resumo:
A novel method based on wavelength-multiplexed line-of-sight absorption and profile fitting for non-uniform flow field measurement is reported. A wavelength scanning combing laser temperature and current modulation WMS scheme is used to implement the wavelength-multiplexed-profile fitting method. Second harmonic (2f) signal of eight H2O transitions features near 7,170 cm(-1) are measured in one period using a single tunable diode laser. Spatial resolved temperature distribution upon a CH4/air premixed flat flame burner is obtained. The result validates the feasibility of strategy for non-uniform flow field diagnostics by means of WMS-2f TDLAS.
Resumo:
Conventional absorption spectroscopy is not nearly sensitive enough for quantitative overtone measurements on submonolayer coatings. While cavity-enhanced absorption detection methods using microresonators have the potential to provide quantitative absorption cross sections of even weakly absorbing submonolayer films, this potential has not yet been fully realized. To determine the absorption cross section of a submonolayer film of ethylene diamine (EDA) on a silica microsphere resonator, we use phase-shift cavity ringdown spectroscopy simultaneously on near-IR radiation that is Rayleigh backscattered from the microsphere and transmitted through the coupling fiber taper. We then independently determine both the coupling coefficient and the optical loss within the resonator. Together with a coincident measurement of the wavelength frequency shift, an absolute overtone absorption cross section of adsorbed EDA, at submonolayer coverage, was obtained and was compared to the bulk value. The smallest quantifiable absorption cross section is σmin 2.7 × 10−12 cm2. This absorption cross section is comparable to the extinction coefficients of, e.g., single gold nanoparticles or aerosol particles. We therefore propose that the present method is also a viable route to absolute extinction measurements of single particles.
Resumo:
The optical cross section of PS I in whole cells of Porphyridium cruentum (UTEX 161), held in either state 1 or state 2, was determined by measuring the change in absorbance at 820nm, an indication of P700+; the X-section of PS2 was determined by measuring the variable fluorescence, (Fv-Fo)/Fo, from PS2. Both cross-sections were 7 determined by fitting Poisson distribution equations to the light saturation curves obtained with single turnover laser flashes which varied in intensity from zero to a level where maximum yield occurred. Flash wavelengths of 574nm, 626nm, and 668nm were used, energy absorbed by PBS, by PBS and chla, and by chla respectively. There were two populations of both PSi and PS2. A fraction of PSi is associated with PBS, and a fraction of PS2 is free from PBS. On the transition S1->S2, only with PBS-absorbed energy (574nm) did the average X-section of PSi increase (27%), and that of PS2 decrease (40%). The fraction of PSi associated with PBS decreased, from 0.65 to 0.35, and the Xsection of this associated PS 1 increased, from 135±65 A2 to 400±300A2. The cross section of PS2 associated with PBS decreased from 150±50 A2 to 85±45 A2, but the fraction of PS2 associated with PBS, approximately 0.75, did not change significantly. The increase in PSi cross section could not be completely accounted for by postulating that several PSi are associated with a single PBS and that in the transition to state2, fewer PSi share the same number of PBS, resulting in a larger X-section. It is postulated that small changes occur in the attachment of PS2 to PBS causing energy to be diverted to the attached PSi. These experiments support neither the mobile-PBS model of state transitions nor that of spillover. From cross section changes there was no evidence of energy transfer from PS2 to PSi with 668nm light. The decrease in PS2 fluorescence which occurred at this wavelength cannot be explained by energy transfer; another explanation must be sought. No explanation was found for an observed decrease in PSi yield at high flash intensities.
Resumo:
The free-carrier absorption cross-section sigma of a magnetic colloid composed of magnetite nanoparticles dispersed in oil is obtained by using the Z-scan technique in different experimental conditions of the laser beam. We show that it is possible to obtain sigma with picosecond pulsed and millisecond chopped beams with pulse frequencies smaller than about 30 Hz. For higher pulse frequencies, the heating of the colloidal system triggers the appearance of the Soret effect. This effect artificially increases the value of sigma calculated from the experimental results. The limits of the different experimental setups are discussed. (C) 2012 Optical Society of America
Resumo:
Las tendencias actuales apuntan al desarrollo de nuevos materiales económicos y ecológicos con óptimas propiedades mecánicas, acústicas y térmicas. En la caracterización acústica del material es habitual medir su coeficiente de absorción sonora. Las dos técnicas usuales de medida de este parámetro son en cámara reverberante y en tubo de Kundt. No obstante, existen técnicas de medida “in situ” del coeficiente de absorción que permiten una comprobación del comportamiento real en la forma definitiva de colocación del material. En este trabajo se presenta un estudio comparativo del coeficiente de absorción sonora medido en un material usando distintas técnicas de medida.
Resumo:
Thesis (M.S.)--University of California, Berkeley, 1899.
Resumo:
Optical nanofibres are ultrathin optical fibres with a waist diameter typically less than the wavelength of light being guided through them. Cold atoms can couple to the evanescent field of the nanofibre-guided modes and such systems are emerging as promising technologies for the development of atom-photon hybrid quantum devices. Atoms within the evanescent field region of an optical nanofibre can be probed by sending near or on-resonant light through the fibre; however, the probe light can detrimentally affect the properties of the atoms. In this paper, we report on the modification of the local temperature of laser-cooled 87Rb atoms in a magneto-optical trap centred around an optical nanofibre when near-resonant probe light propagates through it. A transient absorption technique has been used to measure the temperature of the affected atoms and temperature variations from 160 μk to 850 μk, for a probe power ranging from 0 to 50 nW, have been observed. This effect could have implications in relation to using optical nanofibres for probing and manipulating cold or ultracold atoms.