957 resultados para Zero-dispersion wavelength


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Applying direct error counting, we assess the performance of 20 Gbit/s wavelength-division multiplexing return-to-zero differential phase-shift keying (RZ-DPSK) transmission at 0.4 bit/(s Hz) spectral efficiency for application on installed non-zero dispersion-shifted fibre based transoceanic submarine systems. The impact of the pulse duty cycle on the system performance is investigated and the reliability of the existing theoretical approaches to the BER estimation for the RZ-DPSK format is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a computationally efficient method to the per-channel dispersion optimisation applied to 50 GHz-spaced N × 20-Gbit/s wavelength division multiplexing return-to-zero differential phase shift keying transmission in non-zero dispersion-shifted fibre based submarine systems. Crown Copyright © 2010.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A theoretical and experimental investigation of the time delay characteristics of fiber Bragg grating-based Sagnac loops (FBGSLs) is presented. Analytic expressions for the phase and time delay of the FBGSL have been derived and excellent agreement is found between their predictions and experimental results for configurations incorporating uniform-period and chirped-period gratings. For symmetrical grating structures, it is found that the FBGSL time delay response is similar to that of the incorporated grating; with asymmetrical gratings, the FBGSL response is quite different. It is shown that wavelength-division-multiplexing filters exhibiting near-zero dispersion characteristics can be implemented using FBGSLs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chalcogenide optical fibers are currently undergoing intensive investigation with the aim of exploiting the excellent glass transmission and nonlinear characteristics in the near- and mid-infrared for several applications. Further enhancement of these properties can be obtained, for a particular application, with optical fibers specifically designed that are capable of providing low effective area together with a properly tailored dispersion, matching the characteristics of the laser sources used to excite nonlinear effects. Suspended-core photonic crystal fibers are ideal candidates for nonlinear applications, providing small-core waveguides with large index contrast and tunable dispersion. In this paper, the dispersion properties of As2S3 suspended-core fibers are numerically analyzed, taking into account, for the first time, all the structural parameters, including the size and the number of the glass bridges. The results show that a proper design of the cladding struts can be exploited to significantly change the fiber properties, altering the maximum value of the dispersion parameter and shifting the zero-dispersion wavelengths over a range of 400 nm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Applying direct error counting, we assess the performance of 20 Gbit/s wavelength-division multiplexing return-to-zero differential phase-shift keying (RZ-DPSK) transmission at 0.4 bit/(s Hz) spectral efficiency for application on installed non-zero dispersion-shifted fibre based transoceanic submarine systems. The impact of the pulse duty cycle on the system performance is investigated and the reliability of the existing theoretical approaches to the BER estimation for the RZ-DPSK format is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modification of the statistical properties of vacuum fluctuations, via quadrature squeezing, can dramatically reduce the absorptive and dispersive properties of two-level atoms. We show that for some range of parameter values the system exhibits zero absorption accompanied by zero dispersion of the probe field. This complete transparency is attributed to the coherent population oscillations induced by the squeezed vacuum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider solutions to the second-harmonic generation equations in two-and three-dimensional dispersive media in the form of solitons localized in space and time. As is known, collapse does not take place in these models, which is why the solitons may be stable. The general solution is obtained in an approximate analytical form by means of a variational approach, which also allows the stability of the solutions to be predicted. Then, we directly simulate the two-dimensional case, taking the initial configuration as suggested by the variational approximation. We thus demonstrate that spatiotemporal solitons indeed exist and are stable. Furthermore, they are not, in the general case, equivalent to the previously known cylindrical spatial solitons. Direct simulations generate solitons with some internal oscillations. However, these oscillations neither grow nor do they exhibit any significant radiative damping. Numerical solutions of the stationary version of the equations produce the same solitons in their unperturbed form, i.e., without internal oscillations. Strictly stable solitons exist only if the system has anomalous dispersion at both the fundamental harmonic and second harmonic (SH), including the case of zero dispersion at SH. Quasistationary solitons, decaying extremely slowly into radiation, are found in the presence of weak normal dispersion at the second-harmonic frequency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-speed semiconductor lasers are an integral part in the implemen- tation of high-bit-rate optical communications systems. They are com- pact, rugged, reliable, long-lived, and relatively inexpensive sources of coherent light. Due to the very low attenuation window that exists in the silica based optical fiber at 1.55 μm and the zero dispersion point at 1.3 μm, they have become the mainstay of optical fiber com- munication systems. For the fabrication of lasers with gratings such as, distributed bragg reflector or distributed feedback lasers, etching is the most critical step. Etching defines the lateral dimmensions of the structure which determines the performance of optoelectronic devices. In this thesis studies and experiments were carried out about the exist- ing etching processes for InP and a novel dry etching process was de- veloped. The newly developed process was based on Cl2/CH4/H2/Ar chemistry and resulted in very smooth surfaces and vertical side walls. With this process the grating definition was significantly improved as compared to other technological developments in the respective field. A surface defined grating definition approach is used in this thesis work which does not require any re-growth steps and makes the whole fabrication process simpler and cost effective. Moreover, this grating fabrication process is fully compatible with nano-imprint lithography and can be used for high throughput low-cost manufacturing. With usual etching techniques reported before it is not possible to etch very deep because of aspect ratio dependent etching phenomenon where with increasing etch depth the etch rate slows down resulting in non-vertical side walls and footing effects. Although with our de- veloped process quite vertical side walls were achieved but footing was still a problem. To overcome the challenges related to grating defini- tion and deep etching, a completely new three step gas chopping dry etching process was developed. This was the very first time that a time multiplexed etching process for an InP based material system was demonstrated. The developed gas chopping process showed extra ordinary results including high mask selectivity of 15, moderate etch- ing rate, very vertical side walls and a record high aspect ratio of 41. Both the developed etching processes are completely compatible with nano imprint lithography and can be used for low-cost high-throughput fabrication. A large number of broad area laser, ridge waveguide laser, distributed feedback laser, distributed bragg reflector laser and coupled cavity in- jection grating lasers were fabricated using the developed one step etch- ing process. Very extensive characterization was done to optimize all the important design and fabrication parameters. The devices devel- oped have shown excellent performance with a very high side mode suppression ratio of more than 52 dB, an output power of 17 mW per facet, high efficiency of 0.15 W/A, stable operation over temperature and injected currents and a threshold current as low as 30 mA for almost 1 mm long device. A record high modulation bandwidth of 15 GHz with electron-photon resonance and open eye diagrams for 10 Gbps data transmission were also shown.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present exact analytical results for the statistics of nonlinear coupled oscillators under the influence of additive white noise. We suggest a perturbative approach for analysing the statistics of such systems under the action of a deterministic perturbation, based on the exact expressions for probability density functions for noise-driven oscillators. Using our perturbation technique we show that our results can be applied to studying the optical signal propagation in noisy fibres at (nearly) zero dispersion as well as to weakly nonlinear lattice models with additive noise. The approach proposed can account for a wide spectrum of physically meaningful perturbations and is applicable to the case of large noise strength. © 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we consider the possibility of using intermediate solutions, in which ideal apodisation profile for a dispersion-free, sharp-reflection profile fibre Bragg grating approximated in different degrees. The ideal apodisation profile for a flat dispersion, 50 GHz bandwidth grating was obtained using the layer-peeling algorithm. To verify the modelled results a version of the 5-section grating has been manufactured with excellent agreement between the model and the experimental results. The performance penalty due to multiple reflections from the FBGs in different situations was studied. The results showed that in the approximated gratings some post-compensation must be included to account for the local deviations from zero dispersion. © 2003 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed the analytic expressions for the phase response and time delay of FBGSL of arbitrary grating structure and found that the results from the modelling are in excellent agreement with that of the experimentally measured real devices. The theoretical and experimental investigation clearly reveals that FBGSLs utilizing uniform and linearly chirped gratings exhibit a near-constant time delay in the passbands. Such multi-channel bandpass filters should be highly attractive to WDM applications as they are operating in transmission regime and offering near-zero dispersion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A coupled resonator optical waveguide (CROW) bottle is a bottle-shaped nonuniform distribution of resonator and coupling parameters. This Letter solves the inverse problem for a CROW bottle, i.e., develops a simple analytical method that determines a CROW with the required group delay and dispersion characteristics. In particular, the parameters of CROWs exhibiting the group delay with zero dispersion (constant group delay) and constant dispersion (linear group delay) are found. © 2014 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerous applications within the mid- and long-wavelength infrared are driving the search for efficient and cost effective detection technologies in this regime. Theoretical calculations have predicted high performance for InAs/GaSb type-II superlattice structures, which rely on mature growth of III-V semiconductors and offer many levels of freedom in design due to band structure engineering. This work focuses on the fabrication and characterization of type-II superlattice infrared detectors. Standard UV-based photolithography was used combined with chemical wet or dry etching techniques in order to fabricate antinomy-based type-II superlattice infrared detectors. Subsequently, Fourier transform infrared spectroscopy and radiometric techniques were applied for optical characterization in order to obtain a detector's spectrum and response, as well as the overall detectivity in combination with electrical characterization. Temperature dependent electrical characterization was used to extract information about the limiting dark current processes. This work resulted in the first demonstration of an InAs/GaSb type-II superlattice infrared photodetector grown by metalorganic chemical vapor deposition. A peak detectivity of 1.6x10^9 Jones at 78 K was achieved for this device with a 11 micrometer zero cutoff wavelength. Furthermore the interband tunneling detector designed for the mid-wavelength infrared regime was studied. Similar results to those previously published were obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The authors study experimentally ~10 ps return-to-zero pulse propagation near the net dispersion zero of an optical fibre transmission line. Stable near-jitter-free propagation was observed over 70 Mm. Pulse stabilisation and ASE suppression were achieved through the saturable aborber mechanism of nonlinear polarisation rotation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The authors study experimentally ~10 ps return-to-zero pulse propagation near the net dispersion zero of an optical fibre transmission line. Stable near-jitter-free propagation was observed over 70 Mm. Pulse stabilisation and ASE suppression were achieved through the saturable aborber mechanism of nonlinear polarisation rotation.