993 resultados para Yellowstone Park


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shipping list no.: 90-099-P.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

First published, 1895.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"9/93"--P. [2] of cover.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bibliography : p. [32].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myxobolus cerebralis, the cause of whirling disease in salmonids, has dispersed to waters in 25 states within the USA, often by an unknown vector. Its incidence in Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri within the highly protected environment of Yellowstone Lake, Yellowstone National Park, is a prime example. Given the local abundances of piscivorous birds, we sought to clarify their potential role in the dissemination of M. cerebralis. Six individuals from each of three bird species (American white pelican Pelecanus erythrorhynchos, double-crested cormorant Phalacrocorax auritus, and great blue heron Ardea herodias) were fed known-infected or uninfected rainbow trout O. mykiss. Fecal material produced during 10-d periods before and after feeding was collected to determine whether M. cerebralis could be detected and, if so, whether it remained viable after passage through the gastrointestinal tract of these birds. For all (100%) of the nine birds fed known-infected fish, fecal samples collected during days 1–4 after feeding tested positive for M. cerebralis by polymerase chain reaction. In addition, tubificid worms Tubifex tubifex that were fed fecal material from known-infected great blue herons produced triactinomyxons in laboratory cultures, confirming the persistent viability of the parasite. No triactinomyxons were produced from T. tubifex fed fecal material from known-infected American white pelicans or double-crested cormorants, indicating a potential loss of parasite viability in these species. Great blue herons have the ability to concentrate and release viable myxospores into shallow-water habitats that are highly suitable for T. tubifex, thereby supporting a positive feedback loop in which the proliferation of M. cerebralis is enhanced. The presence of avian piscivores as an important component of aquatic ecosystems should continue to be supported. However, given the distances traveled by great blue herons between rookeries and foraging areas in just days, any practices that unnaturally attract them may heighten the probability of M. cerebralis dispersal and proliferation within the Greater Yellowstone Ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Yellowstone National Park is located over a hot spot under the North American tectonic plate and holds a potentially explosive super-volcano that has the ability to cause deadly consequences on the North American continent. After an eruption the surrounding region would see the greatest devastation, covered by pyroclastic deposits and thick ash fall exterminating most all life and destroying all structures in its path. In landscapes of greater distance from the event the consequences will be less dramatic yet still substantial. Records of previous eruption data from the Yellowstone super-volcano show that the ash fall out from the eruption can cover areas as large as one million square kilometers and could leave Nebraska covered in ash up to 10 centimeters thick. This would cause destruction of agriculture, extensive damage to structures, decreased temperatures, and potential respiratory hazards. The effects of volcanic ash on the human respiratory system have been shown to cause acute symptoms from heavy exposure. Symptoms include nasal irritation, throat irritation, coughing, and if preexisting conditions are present some can develop bronchial symptoms, which can last for a few days. People with bronchitis and asthma are shown to experience airway irritation and uncomfortable breathing. In most occurrences, exposure of volcanic ash is too short to cause long-term health hazards. Wearing facial protection can alleviate much of the symptoms. Most of the long-term ramifications of the eruption will be from the atmospheric changes caused from disruption of solar radiation, which will affect much of the global population. The most pertinent concerns for Nebraska citizens are from the accumulation of ash deposits over the landscape and the climatic perturbations. Potential mitigation procedures are essential to prepare our essentially unaware population of the threat that they may soon face if the volcano continues on its eruption cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the Yellowstone National Park, Wyoming, the silicic Yellowstone volcanic field is one of the most active volcanic systems all over the world. Although the last rhyolite eruption occurred around 70,000 years ago, Yellowstone is still believed to be volcanically active, due to high hydrothermal and seismic activity. The earthquake data used in this study cover the period of time between 1988 and 2010. Earthquake relocations and a set of 369 well-constrained, double-couple, focal mechanism solutions were computed. Events were grouped according to location and time to investigate trends in faulting. The majority of the events has oblique, normal-faulting solutions. The overall direction of extension throughout the 0.64 Ma Yellowstone caldera looks nearly ENE, consistently with the direction of alignments of volcanic vents within the caldera, but detailed study revealed spatial and temporal variations. Stress-field solutions for different areas and time periods were calculated from earthquake focal mechanism inversion. A well-resolved rotation of σ3 was found, from NNE-SSW near the Hebgen Lake fault zone, to ENE-WSW near Norris Junction. In particular, the σ3 direction changed throughout the years in the Norris Junction area, from being ENE-WSW, as calculated in the study by Waite and Smith (2004), to NNE-SSW, while the other σ3 directions are mostly unchanged over time. The Yellowstone caldera was subject to periods of net uplift and subsidence over the past century, explained in previous studies as caused by expanding or contracting sills, at different depths. Based on the models used to explain these deformation periods, we investigated the relationship between variability in aseismic deformation and seismic activity and faulting styles. Focal mechanisms and P and T axes were divided into temporal and depth intervals, in order to identify spatial or temporal trends in deformation. The presence of “chocolate tablet” structures, with composite dilational faults, was identified in many stages of the deformation history both in the Norris Geyser Basin area and inside the caldera. Strike-slip component movement was found in a depth interval below a contracting sill, indicating the movement of magma towards the caldera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subtitle: And among the geysers, cañons, cataracts, forests, lakes, mammoth springs, mud volcanoes, and boiling cauldrons of the national park, containing descriptions of this recently explored region, sketches of Indian customs and traditions, thrilling adventures, and anecdotes and incidents of camplife in the mountains, with an account of the capture and sufferings of a party of tourists who fell into the hands of the Nez-Percés, under Joseph, in the summer of 1877.