965 resultados para Yangtze lakes
Resumo:
The Central Yangtze ecoregion in China includes a number of lakes, but these have been greatly affected by human activities over the past several decades, resulting in severe loss of biodiversity. In this paper, we document the present distribution of the major lakes and the changes in size that have taken place over the past 50 years, using remote sensing data and historical observations of land cover in the region. We also provide an overview of the changes in species richness, community composition, population size and age structure, and individual body size of aquatic plants, fishes, and waterfowl in these lakes. The overall species richness of aquatic plants found in eight major lakes has decreased substantially during the study period. Community composition has also been greatly altered, as have population size and age and individual body size in some species. These changes are largely attributed to the integrated effects of lake degradation, the construction of large hydroelectric dams, the establishment of nature reserves, and lake restoration practices.
Resumo:
Six polymorphic microsatellites (eight loci) were used to study the genetic diversity and population structure of common carp from Dongting Lake (DTC), Poyang Lake (PYC), and the Yangtze River (YZC) in China. The gene diversity was high among populations with values close to 1. The number of alleles per locus ranged from 2 to 11, and the average number of alleles among 3 populations ranged from 6.5 to 7.9. The mean observed (H (O)) and expected (H (E)) heterozygosity ranged from 0.4888 to 0.5162 and from 0.7679 to 0.7708, respectively. Significant deviations from Hardy-Weinberg Equilibrium expectation were found at majority of the loci and in all three populations in which heterozygote deficits were apparent. The analysis of molecular variance (AMOVA) indicated that the percent of variance among populations and within populations were 3.03 and 96.97, respectively. The Fst values between populations indicated that there were significant genetic differentiations for the common carp populations from the Yangtze River and two largest Chinese freshwater lakes. The factors that may result in genetic divergence and significant reduction of the observed heterozygosity were discussed.
Resumo:
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP > 0.1 mgL(-1), NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than anti nitrification. When 0.1 mgL(-1)> TP > 0.035 mgL(-1), TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplankton might be the vital regulating factor. When TP < 0.035 mgL(-1), inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TIP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.
Resumo:
Cyprinid fish, Hemiculter leucisculus, Cultrichthys erythropterus and Culter dabryi, were sampled from Liangzi, Honghu and Tangxun lakes in the flood plain of the Yangtze River. The cestode Bothriocephalus acheilognathi Yamaguti, 1934 was found in the 3 lakes, but C. erythropterus sampled from Liangzi lake was found uninfected due probably to the small sample size. Findings of the cestode in the 3 lakes represent the first record of the parasite in the flood plain of the Yangtze River, indicating that B. acheilognathi may be distributed much wider in China than previously recognized.
Resumo:
The infra- and component communities of intestinal helminths of carp Cyprinus carpio were investigated in six lakes in the flood plain of the lower and middle reaches of the Yangtze River, China. Eight species of helminth parasites were recorded. The intestinal helminth communities were species rich in Niushan and Tonghu lakes where the digenean Asymphylodora japonica was the dominant species, whereas in Qinggang and Yanglan lakes a species-poor helminth community had only one species, Khawia sinensis. The degree of similarity within localities was highest in Qinggang and Yanglan lakes, and was high between communities where K. sinensis was the dominant species. The rich composition of these helminth communities may be because China is the heartland for carp while the poor helminth composition of those in Qinggang and Yanglan lakes may reflect the poor fauna there. It is suggested that species compositions of intestinal helminth communities of carp may be diversified in lakes in the hood plain of the Yangtze River. (C) 1999 The Fisheries Society of the British Isles.
Resumo:
The Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) is currently limited to the middle and lower reaches of the Yangtze River from Yichang to Shanghai, China, and the adjoining Poyang and Dongting Lakes. Its population size has decreased remarkably during the last several decades due to the heavy impact of human activities, including overfishing of prey species, water development projects that cause attendant habitat loss and degradation, water pollution, and accidental deaths caused by harmful fishing gear and collisions with motorized vessels. It was estimated that the number of remaining individuals was down to approximately 1800 in 2006, a number that is decreasing at a rate as high as 5% per year. Three conservation measures - in situ and ex situ conservation and captive breeding have been applied to the protection of this unique porpoise since the early 1990s. Seven natural and two "semi-natural" reserves have so far been established. Since 1996, a small group of finless porpoises has been successfully reared in a facility at the Institute of Hydrobiology of the Chinese Academy of Sciences; three babies were born in captivity on July 5, 2005, June 2, 2007 and July 5, 2008. These are the first freshwater cetaceans ever born in captivity in the world. Several groups of these porpoises caught in the main stream of the Yangtze River, or rescued, have been introduced into the Tian'e-Zhou Semi-natural Reserve since 1990. These efforts have proven that, not only can these animals survive in the area, they are also to reproduce naturally and successfully. More than 30 calves had been born in the reserve since then, with one to three born each year. Taking deaths and transfers into account, there were approximately 30 individuals living in the reserve as of the end of 2007. Among eight mature females captured in April 2008, five were confirmed pregnant. This effort represents the first successful attempt at off-site protection of a cetacean species in the world, and establishes a solid base for conservation of the Yangtze finless porpoise. A lesson must be drawn from the tragedy of Chinese River Dolphin (Lipotes vexillifer), which has already been declared likely extinct. Strong, effective and appropriate protective measures must be carried out quickly to prevent the Yangtze finless porpoise from becoming a second Chinese River Dolphin, and save the biodiversity of the Yangtze River as a whole.
Resumo:
middle and lower reaches of the Yangtze River, China. It is the only freshwater population of porpoises in the world and is currently listed as Endangered by IUCN. In November and December 2006 we used two boats and line transect methods to survey the entire current range of the population, except for two lakes (Poyang and Dongting). Sighting results were similar for both boats, so we pooled all data and analyzed them using two line transect models and a strip transect model. All models produced similar estimates of abundance (1111, 1225 and 1000). We then added independent estimates of the number of porpoises from the two lakes for a total estimate of approximately 1800 porpoises. Our findings indicate that the population continues to decline and that its distribution is becoming more fragmented. Our current estimate in the main river is slightly less than half the estimate from surveys between 1984 and 1991 (which was probably an underestimate). We also found an apparent gap in the distribution of porpoises between Yueyang and Shishou (similar to 150 km), where sightings had previously been common. Continued threats to Yangtze finless porpoises include bycatch in unregulated and unselective fishing, habitat degradation through dredging, pollution and noise, vessel strikes and water development. Immediate protective measures are urgently needed to ensure the persistence of finless porpoises in the Yangtze River. The survey design and analytical methods developed in this study might be appropriate for surveys of cetaceans in other river systems. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
1. In previous work, phytoplankton regulation in freshwater lakes has been associated with many factors. Among these, the ratio of total nitrogen to total phosphorus (TN : TP) has been widely proposed as an index to identify whether phytoplankton are N- or P-limited. From another point of view, it has been suggested that planktivorous fish can be used to control phytoplankton. 2. Large-scale investigations of phytoplankton biomass [measured as chlorophyll a, (chl-a)] were carried out in 45 mid-lower Yangtze shallow lakes to test hypotheses concerning nutrient limitation (assessed with TN : TP ratios) and phytoplankton control by planktivorous fish. 3. Regression analyses indicated that TP was the primary regulating factor and TN the second regulating factor for both annual and summer phytoplankton chl-a. In separate nutrient-chl-a regression analyses for lakes of different TN : TP ratios, TP was also superior to TN in predicting chl-a at all particular TN : TP ranges and over the entire TN : TP spectrum. Further analyses found that chl-a : TP was not influenced by TN : TP, while chl-a : TN was positively and highly correlated to TP : TN. 4. Based on these results, and others in the literature, we argue that the TN : TP ratio is inappropriate as an index to identify limiting nutrients. It is almost impossible to specify a 'cut-off' TN : TP ratio to identify a limiting nutrient for a multi-species community because optimal N : P ratios vary greatly among phytoplankton species. 5. Lakes with yields of planktivorous fish (silver and bighead carp, the species native to China) > 100 kg ha(-1) had significantly higher chl-a and lower Secchi depth than those with yields < 100 kg ha(-1). TP-chl-a and TP-Secchi depth relationships are not significantly different between lakes with yields > 100 kg ha(-1) or < 100 kg ha(-1). These results indicate that the fish failed to decrease chl-a yield or enhance Z(SD). Therefore, silver carp and bighead carp are not recommended as a biotic agent for phytoplankton control in lake management if the goal is to control the entire phytoplankton and to enhance water quality.
Resumo:
Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), a protected endangered species, is the sole freshwater subspecies of finless porpoise, living only in the middle and lower reaches of the Yangtze River, China, and its appended lakes. Its population has decreased sharply to 1,400 because of human activities, including environmental contamination. In the present study, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in the blubber, liver, kidney, stomach, small intestine, and brains of five individual Yangtze finless porpoises collected from 1998 to 2004. The results showed PCB concentrations ranged from 0.06 to 1.89 mu g/g lipid weight in the organs and consisted mainly of penta-, hexa-. and decachlorinated biphenyls. The PBDE concentrations were between 5.32 and 72.76 ng/g lipid weight. Tetra-, penta-, and hexabrominated diphenyl ethers were the major homologues. The PCDD/F concentrations ranged from 65 to 1,563 pg/g lipid weight, and their predominant homologues were penta- and hexachlorinated dibenzofurans and hepta- and octachlorinated dibenzo-p-dioxins. The hazard quotients (HQs) based on toxic equivalency were determined to be greater than one in all individuals for PCBs, for PCDD/Fs, and for PCBs and PCDD/Fs In addition, HQs would be higher if PBDEs were included. The results suggest that reduction of environmental contamination may contribute greatly to protecting this highly endangered species.
Resumo:
Poyang Lake (Poyang Hu) is located at the junction of the middle and lower reaches of the Yangtze (Changjiang) River, covering an area of 3283 km(2). As one of the few lakes that are still freely connected with the river, it plays an important role in the maintenance of the unique biota of the Yangtze floodplain ecosystem. To promote the conservation of Poyang Lake, an investigation of the macrobenthos in the lake itself and adjoining Yangtze mainstream was conducted in 1997-1999. Altogether 58 benthic taxa, including, 22 annelids, 8 mollusks, 26 arthropods, and 2 miscellaneous animals, were identified from quantitative samples. The benthic fauna shows a high diversity and a marine affinity. The standing crops of benthos in the lake were much higher than those in the river, being 659 individuals/m(2) and 187.3g/m(2) (wet mass) in the main lake, and 549 individuals/m(2) and 116.6 g/m(2) in the lake outlet, but only 129 individuals/m(2) and 0.4g/m(2) in the river. The dominant roup in the lake was Mollusca, comprising 63.4% of the total in density and 99.5% in biomass. An analysis of the functional feeding structure indicated that collector-filterers and scrapers were predominant in the lake, up to 42.2% and 24.7% in density and 70.2% and 29.2% in biomass, respectively, while shredders and collector-gatherers were relatively common in the river. The present study was restricted to the northern outlet and the northeast part of Poyang Lake. A scrutiny is required for the remaining areas.
Resumo:
Background, Aim and Scope. There are two species of fresh water cetaceans surviving in the Yangtze River system in China: Baiji (Lipotes vexillifer) and Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis). As a result of the expansion of human activities on the river, their distribution ranges appear to be decreasing and in the case of the Baiji, are even being restricted to several sections. The Baiji is the world's most critically endangered cetacean species with a population estimated at only a few tens of individuals. The Yangtze finless porpoise is the world's only freshwater-adapted population of the species, and it has been estimated that only around 1,000 individuals remain in the river system. In order to prevent the extinction of Baiji and a sharp decline in the abundance of the porpoise, in situ conservation (i.e. in the river) and two ex situ conservation (i.e. in semi-natural reserves and in captivity) strategies were proposed and have been implemented since the early 1990s. In view of both the severely endangered status of the animals and the severely degraded conditions of their habitats, the feasibility and actual status of these two strategies are raised for discussion. Main Features. The threats faced by the cetaceans are mainly from the unfettered exploitation of the river's resources. In the past 20 years, five nature reserves have been established along the river. Imposing maximum prohibition of harmful and illegal fishing methods in the reserves might prolong the process of extinction of these cetaceans in the wild, but so far, the administrative measures taken in the reserves have not yet kept the abundance from sharply declining. As human use of the river and its resources is expected to intensify for many decades into the future, the ability of the river to continue to support these species is certainly undecided. Therefore, rescuing animals from the river and establishing viable breeding populations in semi-natural reserves, in which the environment is similar to the main stream of the river, and in captivity, has to be considered urgently as the short-term goal of ex situ strategies. Since the abundance of porpoises is higher than that of the Baiji, we have first established breeding populations of them in the semi-natural reserves and in captivity. But, considering the extremely low density of Baiji in the river, an immediate range-wide Yangtze Baiji survey is an urgent need for locating and capturing sufficient Baiji for successfully establishing a breeding population of them in semi-natural reserves. Results. Two semi-natural reserves (in Shishou, Hubei Province, and Tongling, Anhui Province) have been set up along the river in order to establish breeding populations of the Baiji and the porpoises. So far, several small groups of porpoises that were caught in the main stream of the river have successively been introduced into the semi-natural reserves. Under careful management, these animals in both of the semi-natural reserves not only survive, but can also reproduce naturally and successfully. At least one or three calves were born in each reserve each year. Additionally, a breeding group of porpoises is being established at the Baiji Dolphinarium at the Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. There are presently four adults and one calf living in the Dolphinarium. The calf, born in July, 2005, is the first captive bred Yangtze Finless Porpoise in the world. In preparation for the range-wide Yangtze cetacean survey, a 9-day pilot expedition on the river near Wuhan was conducted in March, 2006, in order to develop methods for locating the Baiji. No Baiji were expected to be seen in such a short period but about 40 porpoise sightings were observed. Results of the pilot survey indicated that traditional visual and acoustical survey methods for cetaceans should be adapted to find the elusive Baiji in the river. Currently, the range-wide Yangtze cetacean survey is in preparation. The survey will cover over 1,700 km of the Yangtze River from Yichang to Shanghai, and is expected to provide detailed information on Baiji and porpoise numbers and distribution patterns in the river. Discussion. Although the short-term goal of ex situ conservation is to rescue cetaceans from the river and to establish viable breeding populations in semi-natural reserves and in captivity, the long-term goal of releasing the animals back into the river when the threats have decreased and the natural environment has been improved, should not be neglected. Moreover, the in situ conservation efforts in the natural reserves, and even in the entire Yangtze River system, including the lakes, should not be ignored or abandoned at any time. The activities contributing to the conservation of the Baiji and the porpoise in the wild have the incidental effect of benefiting the entire Yangtze ecosystem and other rare threatened species. The dynamics of the groups of porpoises in semi-natural reserves should be monitored continually, in order to guide the establishment of breeding groups of Baiji in these semi-natural reserves in the near future. Conclusions. Under the existing severely degraded conditions of the Yangtze system, the sharply fall populations of Baiji and porpoises will not be suspended in the foreseeable future. Therefore, ex situ conservation should be emphasized, and the severely threatened Baiji in the river should be removed and translocated to semi-natural reserves for establishing viable breeding populations. The successful program of capturing, translocating and maintaining finless porpoises in the Shishou semi-natural reserve has demonstrated its adequacy as an ex situ environment for cetaceans. Following the successful pilot survey in the river, the immediate range-wide Yangtze cetacean survey is proposed and is in preparation. The range-wide survey is expected to ensure that any remaining Baiji can be found reliably and captured successfully after the survey. Recommendations and Perspectives. During the range-wide survey, not only the Baiji but also the porpoise as well as their habitats should be investigated based on visual and acoustical methods that adapted to the river and the animals. Meanwhile, the current risk levels to the Baiji and porpoises should be evaluated at each area where Baiji or porpoises can be reliably sighted. Any capture efforts should be targeted on the most threatened areas, or where there is maximum risk of injury or death. The immediate track of the Baiji should be carried out once a Baiji is sighted during the range-wide survey in order to obtain the movement route of the animals, which is crucial information for the successful capture operation. Additionally, the need to establish new semi-natural reserves for the porpoises should be placed on the agenda of local and central governments in the near future.
Resumo:
Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.
Resumo:
Background. As the sole freshwater subspecies of finless porpoise (Neophocaena phocaenoides), the Yangtze finless porpoise (N. p. asiaeorientalis) lives only in the middle and lower reaches of the Yangtze River and its appended Poyang and Dongting Lakes. As a result of human activity on the river, including over and illegal fishing, pollution, transportation and dam construction, the population of Yangtze finless porpoises has been steadily and rapidly decreasing during the past several decades, which leads the animal to be endangered. Methods. For saving this unique animal from extinction, three corresponding measures, in situ conservation, ex situ conservation, and intensifying breeding research in captivity, were proposed and have been implemented since the 1980s. Results. After successfully rearing the animals in captivity for almost nine years, the first Yangtze finless porpoise was successfully born in captivity on July 5, 2005. The calf is male, with a body length of 69 cm. This is the first freshwater cetacean ever born in captivity. Conclusion. The successful birth of this calf confirms that it is possible to breed the Yangtze finless porpoise in captivity. Furthermore, this will greatly benefit the conservation efforts, and also greatly bolster our on-going efforts to study the reproductive biology of these animals. Recommendation. More studies and efforts are expected to establish a sustainable, captive colony of the Yangtze finless porpoise, which will not only greatly expand our knowledge about the reproduction biology of this animal, but also help to redeem the wild population through a careful yearly 'soft releasing' process.
Resumo:
Comparative studies on macrozoobenthos were done in 2 shallow mesotrophic lakes in the middle basins of the Yangtze River, China: Lake Biandantang where macrophytes were abundant, and Lake Houhu where macrophytes were scarce Samples were taken monthly at 4 stations in each lake from April 1997 to March 1999, and a total of 67 and 31 tara of macrozoobenthos were recorded in Lake Biandantang and Lake Houhu, respectively. Both annual mean density and biomass of macrozoobenthos were higher in Lake Biandantang than in Lake Houhu: 780 vs 532 indivials/m(2) and 37.1 vs 25.9 g wet mass/m(2), respectively. Abundance of functional feeding groups followed the order: scraper > collector > predator > shredder in Lake Biandantang, and collector > predator > scraper > shredder in Lake Houhu. Only 1 density peak occurred from winter to early spring in Lake Houhu; however, in Lake Biandantang, there were 2 peaks, the winter peak and spring peak. K-dominance curves and Shannon-Wiener, Simpson, and Margelef indices indicated that macrozoobenthos were more diverse in Lake Biandantang than in Lake Houhu Our study suggests that, in shallow lakes, submerged macrophytes are essential for the maintenance of biodiversity of macrozoobenthos mainly because the macrophytes increase habit heterogeneity and availability of suitable food, and may also decrease predation by fish on the macrozoobenthos.