826 resultados para Y-chromosome Diversity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chromosomes 1, Y-1, Y-2 of Muntjac munticus vaginalis were isolated by fluorescence activated chromosome sorting and amplified by degenerate oligonucleotide primed-polymerase chain reaction ( DOP-PCR). A primer pair within human Sry HMG box was design

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Male infertility affects approximately 2-7% of couples around the world. Over one in ten men who seek help at infertility clinics are diagnosed as severely oligospermic or azoospermic. Recent extensive molecular studies have revealed that deletions in the azoospermia factor region of the long arm of the Y chromosome are associated with severe spermatogenic impairment (absent or severely reduced germ cell development). Genetic research into male infertility, in the last 7 years, has resulted in the isolation of a great number of genes or gene families on the Y chromosome, some of which are believed to influence spermatogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to study the intergeneric variability of the Y chromosome, we describe the hybridization of the Y chromosome of Brachyteles arachnoides, obtained by microdissection, to metaphases of Ateles belzebuth marginatus, Lagothrix lagothricha, and Alouatta male specimens. Brachyteles arachnoides (Atelinae) has 62 chromosomes and a very small Y chromosome. Our results showed that the Brachyteles arachnoides Y chromosome probe hybridized to Lagothrix lagothricha metaphases yielding one hybridization signal on only the tiny Y chromosome, and when hybridized with Ateles belzebuth marginatus metaphases it yielded one hybridization signal on two thirds of the small acrocentric Y chromosome. However, no hybridization signal was observed in Alouatta metaphases (subfamily Alouattinae), a closely related genus in the Atelidae family. Furthermore, our data support a close phylogenetic relationship among Brachyteles, Ateles, and Lagothrix and their placement in the Atelinae subfamily, but exclude Alouatta from this group indicating its placement as basal to this group. Copyright (C) 2009 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maternal and paternal genetic profile of Guineans is markedly sub-Saharan West African, with the majority of lineages belonging to L0-L3 mtDNA sub-clusters and E3a-M2 and E1-M33 Y chromosome haplogroups. Despite the sociocultural differences among Guinea-Bissau ethnic groups,marked by the supposedly strict admixture barriers, their genetic pool remains largely common. Their extant variation coalesces at distinct timeframes, from the initial occupation of the area to later inputs of people. Signs of recent expansion in mtDNA haplogroups L2a-L2c and NRY E3a-M2 suggest population growth in the equatorial western fringe, possibly supported by an early local agricultural centre, and to which the Mandenka and the Balanta people may relate. Non-West African signatures are traceable in less frequent extant haplogroups, fitting well with the linguistic and historical evidence regarding particular ethnic groups: the Papel and Felupe-Djola people retain traces of their putative East African relatives; U6 and M1b among Guinea-Bissau Bak-speakers indicate partial diffusion to Sahel of North African lineages; U5b1b lineages in Fulbe and Papel represent a link to North African Berbers, emphasizing the great importance of post-glacial expansions; exact matches of R1b-P25 and E3b1-M78 with Europeans likely trace back to the times of the slave trade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromosomes of a species of Eigenmannia presenting a X1X1X2X2:X1X2Y sex chromosome system, resulting from a Y-autosome Robertsonian translocation, were analyzed using the C-banding technique, chromomycin A(3) (CMA(3)) and mithramycin (MM) staining and in situ digestion by the restriction endonuclease AluI. A comparison of the metacentric Y chromosome of males with the corresponding acrocentrics in females indicated that a C-band-positive, CMA(3)/MM-fluorescent and AluI digestion-resistant region had been lost during the process of translocation, resulting in a diminution of heterochromatin in the males. It is hypothesized that the presence of a smaller amount of G+C-rich heterochromatin in the sex chromosomes of the heteromorphic sex when compared with the homomorphic sex may be associated with the sex determination mechanism in this species and may be a more widely occurring phenomenon in fish with differentiated sex chromosomes than was initially thought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Y chromosomes are genetically degenerate and do not recombine with their matching partners X. Non-recombination of XY pairs has been pointed out as the key factor for the degeneration of the Y chromosome. The aim here is to show that there is a mathematical asymmetry in sex chromosomes which leads to the degeneration of Y chromosomes even in the absence of XX and XY recombination. A model for sex-chromosome evolution in a stationary regime is proposed. The consequences of their asymmetry are analyzed and lead us to a couple of conclusions. First, Y chromosome degeneration shows up v 2 more often than X chromosome degeneration. Second, if nature prohibits female mortalities from beeing exactly 50%, then Y chromosome degeneration is inevitable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Y chromosomes are genetically degenerated and do not recombine with their matching partners X. Recombination of XX pairs is pointed out as the key factor for the Y chromosome degeneration. However, there is an additional evolutionary force driving sex-chromosomes evolution. Here we show this mechanism by means of two different evolutionary models, in which sex chromosomes with non-recombining XX and XY pairs of chromosomes is considered. Our results show three curious effects. First, we observed that even when both XX and XY pairs of chromosomes do not recombine, the Y chromosomes still degenerate. Second, the accumulation of mutations on Y chromosomes followed a completely different pattern then those accumulated on X chromosomes. and third, the models may differ with respect to sexual proportion. These findings suggest that a more primeval mechanism rules the evolution of Y chromosomes due exclusively to the sex-chromosomes asymmetry itself, i.e., the fact that Y chromosomes never experience female bodies. Over aeons, natural selection favored X chromosomes spontaneously, even if at the very beginning of evolution, both XX and XY pairs of chromosomes did not recombine.