887 resultados para Xingxiu, 1166-1246.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty-three core catcher samples from Site 1166 (Hole 1166A) in Prydz Bay were analyzed for their palynomorph content, with the aims of determining the ages of the sequence penetrated, providing information on the vegetation of the Antarctic continent at this time, and determining the environments under which deposition occurred. Dinocysts, pollen and spores, and foraminiferal test linings were recovered from most samples in the interval from 142.5 to 362.03 meters below seafloor (mbsf). The interval from 142.5 to 258.72 mbsf yielded palynomorphs indicative of a middle-late Eocene age, equivalent to the lower-middle Nothofagidites asperus Zone of the Gippsland Basin of southeastern Australia. The Prydz Bay sequence represents the first well-dated section of this age from East Antarctica. Dinocysts belonging to the widespread "Transantarctic Flora" give a more confident late Eocene age for the interval 142.5-220.5 mbsf. The uppermost two cores within this interval, namely, those from 142.5 and 148.36 mbsf, show significantly higher frequencies of dinocysts than the cores below and suggest that an open marine environment prevailed at the time of deposition. The spore and pollen component may reflect a vegetation akin to the modern rainforest scrubs of Tasmania and New Zealand. Below 267 mbsf, sparse microfloras, mainly of spores and pollen, are equated with the Phyllocladidites mawsonii Zone of southeastern Australia, which is of Turonian to possibly Santonian age. Fluvial to marginal marine environments of deposition are suggested. The parent vegetation from this interval is here described as "Austral Conifer Woodland." The same Late Cretaceous microflora occurs in two of the cores above the postulated unconformity at 267 mbsf. In the core at 249.42 mbsf, the Late Cretaceous spores and pollen are uncontaminated by any Tertiary forms, suggesting that a clast of this older material has been sampled; such a clast may reflect transport by ice during the Eocene. At 258.72 mbsf, Late Cretaceous spores and pollen appear to have been recycled into the Eocene sediments.

Relevância:

20.00% 20.00%

Publicador: