942 resultados para Xenopus-embryos
Resumo:
Previously, we elucidated the role of bone morphogenetic protein 4 (BMP-4) in the dorsal-ventral patterning of the Xenopus embryo by using a dominant negative mutant of the BMP-4 receptor (DN-BR). The present paper describes the involvement of Ras, Raf, and activator protein 1 (AP-1) in BMP-4 signaling during Xenopus embryonic development. The AP-1 activity was determined by injecting an AP-1-dependent luciferase reporter gene into two-cell-stage Xenopus embryos and measuring the luciferase activity at various developmental stages. We found that injection of BMP-4 mRNA increased AP-1 activity, whereas injection of DN-BR mRNA inhibited AP-1 activity. Similar inhibitory effects were seen with injection of mRNAs encoding dominant negative mutants of c-Ha-Ras, c-Raf, or c-Jun. These results suggest that the endogenous AP-1 activity is regulated by BMP-4/Ras/Raf/Jun signals. We next investigated the effects of Ras/Raf/AP-1 signals on the biological functions of BMP-4. DN-BR-induced dorsalization of the embryo, revealed by the formation of a secondary body axis or dorsalization of the ventral mesoderm explant analyzed by histological and molecular criteria, was significantly reversed by coinjection of [Val12]Ha-Ras, c-Raf, or c-Jun mRNA. Furthermore, the BMP-4-stimulated erythroid differentiation in the ventral mesoderm was substantially inhibited by coinjection with the dominant negative c-Ha-Ras, c-Raf, or c-Jun mutant. Our results suggest the involvement of Ras/Raf/AP-1 in the BMP-4 signaling pathway.
Resumo:
Bone morphogenetic protein 4 (BMP-4) induces ventral mesoderm but represses dorsal mesoderm formation in Xenopus embryos. We show that BMP-4 inhibits two signaling pathways regulating dorsal mesoderm formation, the induction of dorsal mesoderm (Spemann organizer) and the dorsalization of ventral mesoderm. Ectopic expression of BMP-4 RNA reduces goosecoid and forkhead-1 transcription in whole embryos and in activin-treated animal cap explants. Embryos and animal caps overexpressing BMP-4 transcribe high levels of genes expressed in ventral mesoderm (Xbra, Xwnt-8, Xpo, Mix.1, XMyoD). The Spemann organizer is ventralized in these embryos; abnormally high levels of Xwnt-8 mRNA and low levels of goosecoid mRNA are detected in the organizer. In addition, the organizer loses the ability to dorsalize neighboring ventral marginal zone to muscle. Overexpression of BMP-4 in ventral mesoderm inhibits its response to dorsalization signals. Ventral marginal zone explants ectopically expressing BMP-4 form less muscle when treated with soluble noggin protein or when juxtaposed to a normal Spemann organizer in comparison to control explants. Endogenous BMP-4 transcripts are downregulated in ventral marginal zone explants dorsalized by noggin, in contrast to untreated explants. Thus, while BMP-4 inhibits noggin protein activity, noggin downregulates BMP-4 expression by dorsalizing ventral marginal zone to muscle. Noggin and BMP-4 activities may control the lateral extent of dorsalization within the marginal zone. Competition between these two molecules may determine the final degree of muscle formation in the marginal zone, thus defining the border between dorsolateral and ventral mesoderm.
Resumo:
Large scale screening of libraries consisting of natural and small molecules led to the identification of many small molecule inhibitors repressing Wnt/β-Catenin signaling. However, targeted synthesis of novel Wnt pathway inhibitors has been rarely described. We developed a modular and expedient way to create the aromatic ring system with an aliphatic ring in between. Our synthesis opens up the possibility, in principle, to substitute all positions at the ring system with any desired substituent. Here, we tested five different haloquinone analogs carrying methoxy- and hydroxy-groups at different positions. Bona fide Wnt activity assays in cell culture and in Xenopus embryos revealed that two of these compounds act as potent inhibitors of aberrant activated Wnt/β-Catenin signaling.
Resumo:
叶酸是B族维生素的一员,参与体内一系列重要的生命过程包括DNA,氨基酸的合成,调控细胞周期,参与一碳单位供体循环,调节DNA,蛋白质甲基化等。叶酸的许多功能都和叶酸结合蛋白有关,体内有多种跨膜形式的叶酸结合蛋白,比如Folbp1,RFC,HCP等。以前的研究表明这些不同的叶酸结合蛋白具有不同的功能。分泌型叶酸结合蛋白是另外一类叶酸结合蛋白,在人类,小鼠,猪中都有序列报道,但是其功能却知之甚少。 我们在非洲爪蛙中鉴定出一个全新的分泌型叶酸结合蛋白并命名为Secreted Folate Binding Protein(sFBP)。在胚胎和转染细胞系中我们都证明该蛋白是分泌性的,表面等离子共振实验发现sFBP能够结合叶酸。在胚胎早期这个基因表达于粘液腺和神经板区域,神经管闭合后在神经管、粘液腺、眼睛,头部以及鳃弓都有表达。特异morpholino 阻断sFBP翻译后发现粘液腺发育异常,神经管闭合缺陷,前后体轴聚集延伸运动受到抑制,尾芽期胚胎表现出体轴缩短,无眼,小头或无头的表型。进一步研究发现显微注射sFBP morpholino 的胚胎神经板区域细胞发生凋亡,中胚层和神经外胚层的一系列粘附分子表达异常,神经细胞的正常分化也受到抑制。通过显微移植实验我们还发现抑制sFBP的翻译后,神经嵴细胞的正常分化和迁移都受到抑制。但是,显微注射叶酸及其类似物或者显微注射甲基供体S-腺苷甲硫氨酸或者亮氨酸甲基转移酶都不能挽救阻断sFBP造成的表形,由此提示sFBP可能不是通过叶酸传统的参与营养合成或者甲基化的途径发挥作用。我们发现注射sFBP morpholino可以抑制Islet-1mRNA和蛋白质的表达,Islet-1的表达区域与sFBP类似。共同注射Islet-1 mRNA和sFBP morpholino可以极大的挽救sFBP morpholino的表型。最后通过morpholino特异阻断Islet-1的表达后,我们发现其表现出与sFBP morpholino类似的粘液腺发育缺陷,神经板细胞凋亡,小头无眼的表形。由此叶酸是B族维生素的一员,参与体内一系列重要的生命过程包括DNA,氨基酸的合成,调控细胞周期,参与一碳单位供体循环,调节DNA,蛋白质甲基化等。叶酸的许多功能都和叶酸结合蛋白有关,体内有多种跨膜形式的叶酸结合蛋白,比如Folbp1,RFC,HCP等。以前的研究表明这些不同的叶酸结合蛋白具有不同的功能。分泌型叶酸结合蛋白是另外一类叶酸结合蛋白,在人类,小鼠,猪中都有序列报道,但是其功能却知之甚少。 我们在非洲爪蛙中鉴定出一个全新的分泌型叶酸结合蛋白并命名为Secreted Folate Binding Protein(sFBP)。在胚胎和转染细胞系中我们都证明该蛋白是分泌性的,表面等离子共振实验发现sFBP能够结合叶酸。在胚胎早期这个基因表达于粘液腺和神经板区域,神经管闭合后在神经管、粘液腺、眼睛,头部以及鳃弓都有表达。特异morpholino 阻断sFBP翻译后发现粘液腺发育异常,神经管闭合缺陷,前后体轴聚集延伸运动受到抑制,尾芽期胚胎表现出体轴缩短,无眼,小头或无头的表型。进一步研究发现显微注射sFBP morpholino 的胚胎神经板区域细胞发生凋亡,中胚层和神经外胚层的一系列粘附分子表达异常,神经细胞的正常分化也受到抑制。通过显微移植实验我们还发现抑制sFBP的翻译后,神经嵴细胞的正常分化和迁移都受到抑制。但是,显微注射叶酸及其类似物或者显微注射甲基供体S-腺苷甲硫氨酸或者亮氨酸甲基转移酶都不能挽救阻断sFBP造成的表形,由此提示sFBP可能不是通过叶酸传统的参与营养合成或者甲基化的途径发挥作用。我们发现注射sFBP morpholino可以抑制Islet-1mRNA和蛋白质的表达,Islet-1的表达区域与sFBP类似。共同注射Islet-1 mRNA和sFBP morpholino可以极大的挽救sFBP morpholino的表型。最后通过morpholino特异阻断Islet-1的表达后,我们发现其表现出与sFBP morpholino类似的粘液腺发育缺陷,神经板细胞凋亡,小头无眼的表形。由此我们认为sFBP结合叶酸后可能通过细胞膜上的受体传递信号,并且Islet-1可能在sFBP的下游发挥作用。 神经嵴是脊椎动物特有的一群多潜能干细胞,产生于表皮和神经板的边界,在原肠运动之后这群细胞通过表皮间充值转换从神经管背侧迁移到不同的区域,分化成不同的细胞类型,包括外周神经系统,色素细胞,软骨等。神经嵴的发生是一个多步骤多基因参与的精细调控过程。目前理论认为最初由一些分泌性信号分子又叫形态生成素比如BMP,Wnt,FGF,Notch等通过不同浓度梯度的相互作用调节一组在表皮和神经板边界的转录因子(Msx、Pax3/7、Zic1、Dlx3/5等)的表达,即边界决定。这些边界决定因子进一步在预定形成神经嵴的区域激活神经嵴特化基因比如Slug/Snail、FoxD3、Twist、Sox9/10的表达完成神经嵴的特化(Specification)。 Nkx6.3是Nkx6家族的一个转录因子,RT-PCR显示其呈现母源性表达。特异抗体显示Nkx6.3蛋白第9期在整个胚胎都表达,大部分蛋白集中在细胞核,有少部分蛋白定位于细胞膜上;神经板时期主要定位于神经嵴区域的细胞膜上。过表达Nkx6.3会影响细胞粘连分子的表达,由此干扰正常的胚胎原肠运动和Activin诱导的动物帽聚集延伸运动。显微注射Nkx6.3特异morpholino阻断其蛋白表达会抑制神经嵴的marker基因Wnt8,Fgf8,Pax3,Msx1,Zic1,FoxD3,Slug的转录,阻碍神经嵴的发育。在动物帽中单独注射Nkx6.3可以在mRNA水平上诱导Wnt8、Fgf8另一方面抑制BMP4的表达进而诱导神经嵴基因Pax3,Zic1,Slug的表达。报告基因实验也显示Nkx6.3能够激活Wnt信号而在动物帽中抑制BMP信号。Nkx6.3蛋白功能域分析发现其EH1结构域(domain)参与对Wnt8信号的激活,而EH1结构域和HD结构域之间的连接区域(linker domain)参与对FGF的激活和对BMP的抑制。进一步在动物帽和胚胎中分析发现Nkx6.3对Wnt8的激活依赖于FGF家族受体信号但是不依赖于Fgf8。有趣的是4细胞时期过表达Nkx6.3促进Fgf8和Wnt8 mRNA表达,但是抑制边界决定基因Msx1、Pax3和神经嵴特化基因Slug的转录。在32细胞时期显微注射Nkx6.3可以在内源神经嵴发生区域抑制Slug的表达,而异位却诱导Slug的mRNA。我们发现与动物帽中对BMP的调节不同,在胚胎中,过表达Nkx6.3会强烈的激活Smad1蛋白在细胞核中的表达即BMP信号被激活,高的BMP信号会抑制神经嵴的发生。另外我们发现过表达Nkx6.3在胚胎中抑制Dlx5而在动物帽中却不影响Dlx5的表达水平,Morpholino阻断Dlx5会抑制Msx1、Pax3和Slug的表达。BMP信号和Dlx5在动物帽和在整体胚胎中对Nkx6.3的不同响应可以一定程度上解释过表达Nkx6.3在2个系统中对神经嵴基因Slug相反的影响结果。
Resumo:
Signaling molecules of the Wnt gene family are involved in the regulation of dorso-ventral, segmental and tissue polarity in Xenopus and Drosophila embryos. Members of the frizzled gene family, such as Drosophila frizzled-2 and rat frizzled-1, have been shown encode Wnt binding activity and to engage intracellular signal transduction molecules known to be part of the Wnt signaling pathway. Here we describe the cloning and characterization of Fritz, a mouse (mfiz) and human (hfiz) gene which codes for a secreted protein that is structurally related to the extracellular portion of the frizzled genes from Drosophila and vertebrates. The Fritz protein antagonizes Wnt function when both proteins are ectopically expressed in Xenopus embryos. In early gastrulation, mouse fiz mRNA is expressed in all three germ layers. Later in embryogenesis fiz mRNA is found in the central and peripheral nervous systems, nephrogenic mesenchyme and several other tissues, all of which are sites where Wnt proteins have been implicated in tissue patterning. We propose a model in which Fritz can interfere with the activity of Wnt proteins via their cognate frizzled receptors and thereby modulate the biological responses to Wnt activity in a multitude of tissue sites.
Resumo:
The Wnt pathways contribute to many processes in cancer and developmental biology, with β-catenin being a key canonical component. P120-catenin, which is structurally similar to β-catenin, regulates the expression of certain Wnt target genes, relieving repression conferred by the POZ/ zinc-finger transcription factor Kaiso. In my first project, employing Xenopus embryos and mammalian cell lines, I found that the degradation machinery of the canonical Wnt pathway modulates p120-catenin protein stability, especially p120 isoform-1, through mechanisms shared with b-catenin. Exogenous expression of destruction-complex components such as GSK3b or Axin promotes p120-catenin degradation, and consequently, is able to rescue developmental phenotypes resulting from p120 over-expression during early Xenopus embryonic development. Conversely, as predicted, the in vivo depletion of either Axin or GSK3b coordinately increased p120 and b-catenin levels, while p120 levels decreased upon LRP5/6 depletion, which are positive modulators in the canonical Wnt pathway. At the primary sequence level, I resolved conserved GSK3b phosphorylation sites in p120’s (isoform 1) amino-terminal region. Point-mutagenesis of these residues inhibited the association of destruction complex proteins including those involved in ubiquitination, resulting in p120-catenin stabilization. Importantly, we found that two additional p120-catenin family members, ARVCF-catenin and d-catenin, in common with b-catenin and p120, associate with Axin, and are degraded in Axin’s presence. Thus, by similar means, it appears that canonical Wnt signals coordinately modulate multiple catenin proteins having roles in development and conceivably disease states. In my second project, I found that the Dyrk1A kinase exhibits a positive effect upon p120-catenin levels. That is, unlike the negative regulator GSK3b kinase, a candidate screen revealed that Dyrk1A kinase enhances p120-catenin protein levels via increased half-life. Dyrk1A is encoded by a gene located within the trisomy of chromosome 21, which contributes to mental retardation in Down Syndrome patients. I found that Dyrk1A expression results in increased p120 protein levels, and that Dyrk1A specifically associates with p120 as opposed to other p120-catenin family members or b-catenin. Consistently, Dyrk1A depletion in mammalian cell lines and Xenopus embryos decreased p120-catenin levels. I further confirmed that Dyrk overexpression and knock-down modulates both Siamois and Wnt11 gene expression in the expected manner based upon the resulting latered levels of p120-catenin. I determined that Dyrk expression rescues Kaiso depletion effects (gastrulation failure; increased endogenous Wnt11 expression), and vice versa. I then identified a putative Dyrk phosphorylation region within the N-terminus of p120-catenin, which may also be responsible for Dyrk1A association. I went on to make a phosphomimic mutant, which when over-expressed, had the predicted enhanced capacity to positively modulate endogenous Wnt11 and Siamois expression, and thereby generate gastrulation defects. Given that Dyrk1A modulates Siamois expression through stabilization of p120-catenin, I further observed that ectopic expression of Dyrk can positively influence b-catenin’s capacity to generate ectopic dorsal axes when ventrally expressed in early Xenopus embryos. Future work will investigate how Dyrk1A modulates the Wnt signaling pathway through p120-catenin, and possibly begin to address how dysfunction of Dyrk1A with respect to p120-catenin might relate to aspects of Down syndrome. In summary, the second phase of my graduate work appears to have revealed a novel aspect of Dyrk1A/p120-catenin action in embryonic development, with a functional linkage to canonical Wnt signaling. What I have identified as a “Dyrk1A/p120-catenin/Kaiso pathway” may conceivably assist in our larger understanding of the impact of Dyrk1A dosage imbalance in Down syndrome.
Resumo:
MEF2 is a $\underline{\rm m}$yocyte-specific $\underline{\rm e}$nhancer-binding $\underline{\rm f}$actor that binds a conserved DNA sequence, CTA(A/T)$\sb4$TAG. A MEF2 binding site in the XMyoDa promoter overlaps with the TATA box and is required for muscle specific expression. To examine the potential role of MEF2 in the regulation of MyoD transcription during early development, the appearance of MEF2 binding activity in developing Xenopus embryos was analyzed with the electrophoretic mobility shift assay. Two genes were isolated from a X. Laevis stage 24 cDNA library that encode factors that bind the XMyoDa TFIID/MEF2 site. Both genes are highly homologous to each other, belong to the MADS ($\underline{\rm M}$CM1-$\underline{\rm A}$rg80-agamous-$\underline{\rm d}$eficiens-$\underline{\rm S}$RF) protein family, and most highly related to the mammalian MEF2A gene, hence they are designated as XMEF2A1 and XMEF2A2. Proteins encoded by both cDNAs form specific complexes with the MEF2 binding site and show the same binding specificity as the endogenous MEF2 binding activity. XMEF2A transcripts accumulate preferentially in developing somites after the appearance of XMyoD transcripts. XMEF2 protein begins to accumulate in somites at tailbud stages. Transcriptional activation of XMyoD promoter by XMEF2A required only the MADS box and MEF2-specific domain when XMEF2A is bound at the TATA box. However, a different downstream transactivation domain was required when XMEF2A activates transcription through binding to multiple upstream sites. These results suggest that different activation mechanisms are involved, depending on where the factor is bound. Mutations in several basic amino acid clusters in the MADS box inhibit DNA binding suggesting these amino acids are essential for DNA binding. Mutation of Thr-20 and Ser-36 to the negatively charged amino acid residue, aspartic acid, abolish DNA binding. XMEF2A activity may be regulated by phosphorylation of these amino acids. A dominant negative mutant was made by mutating one of the basic amino acid clusters and deleting the downstream transactivation domain. In vivo roles of MEF2 in the regulation of MyoD transcription were investigated by overexpression of wild type MEF2 and dominant negative mutant of XMEF2A in animal caps and assaying for the effects on the level of expression of MyoD genes. Overexpression of MEF2 activates the transcription of endogenous MyoD gene family while expression of a dominant negative mutant reduces the level of transcription of XMRF4 and myogenin genes. These results suggest that MEF2 is downstream of MyoD and Myf5 and that MEF2 is involved in maintaining and amplifying expression of MyoD and Myf5. MEF2 is upstream of MRF4 and myogenin and plays a role in activating their expression. ^
Resumo:
The canonical and non-canonical Wnt signaling pathways appear to interact with one another as a network in development, or when hyper-activated, in the progression of disease. A much studied key mediator of the canonical Wnt pathway, β-catenin, is characterized by a central armadillo-repeat domain that engages in multiple protein-protein interactions, such as those with cadherins functioning at cell-cell contact regions. In the nucleus, β-catenin forms a complex with the repressor TCF/LEF, promoting the activation of genes participating in processes such as proliferation, differentiation and stem cell survival. Somewhat similarly, the p120-catenin binds the distinct transcriptional repressor Kaiso, relieving Kaiso-mediated repression to promote gene activation. Here, employing Xenopus laevis, I report upon both downstream and upstream aspects of the p120-catenin/Kaiso pathway which was previously poorly understood. I first show that Kaiso, a BTB/POZ zinc-finger family member, directly represses canonical Wnt gene targets (Siamois, c-Fos, Cyclin-D1 and c-Myc) in conjunction with TCF. Depletion or dominant-negative inhibition of xKaiso results in Siamois de-repression, while xKaiso over-expression induces additional Siamois repression through recruitment of N-CoR co-repressor and chromatin modifications. Functional interdependencies are further corroborated by the capacity of Kaiso to suppress β-catenin-induced axis duplication. Thus, my work inter-relates the p120-catenin/Kaiso and β-catenin/TCF pathways at the level of specific gene promoters important in development and cancer progression. Regarding upstream aspects of the p120-catenin/Kaiso pathway, I collaboratively identified p120 in association with Frodo, a protein previously identified as a component of the canonical (β-catenin dependent) Wnt pathway. I determined that canonical Wnt signals result in Frodo-mediated stabilization of p120-catenin, resulting in the sequestration of Kaiso to the cytoplasm and thereby the activation (relief of repression) of gene targets. Developmental evidence supporting this view included findings that Frodo has the capacity to partially rescue Kaiso over-expression phenotypes in early Xenopus embryos. Taken together, my studies point to the convergence of p120-catenin/Kaiso and β-catenin/TCF signaling pathways at the level of gene transcription as well as at more upstream points during vertebrate development. ^
Resumo:
Catenins were first characterized as linking the cytoplasmic domains of cadherin cell-cell adhesion molecules to the cortical actin cytoskeleton. In addition to their essential role in modulating cadherin adhesion, catenins have more recently been indicated to participate in cell and developmental signaling pathways. $\beta$-catenin, for example, associates directly with receptor tyrosine kinases and transcription factors such as LEF-1/TCF, and tranduces developmental signals within the Wnt pathway. $\beta$-catenin also appear to a role in regulating cell proliferation via its interaction with the tumor supressor protein APC. I have employed the yeast two-hybrid method to reveal that fascin, a bundler of actin filaments, binds to $\beta$-catenin's central Armadillo-repeat domain. The $\beta$-catenin-fascin interaction exists in cell lines as well as in animal brain tissues as revealed by immunoprecipitation analysis, and substantiated in vitro with purified proteins. Fascin additionally binds to plakoglobin, which contains a more divergent Armadillo-repeat domain. Fascin and E-cadherin utilize a similar binding-site within $\beta$-catenin, such that they form mutually exclusive complexes with $\beta$-catenin. Fascin and $\beta$-catenin co-localize at cell-cell borders and dynamic cell leading edges of epithelial and endothelial cells. Total immunoprecipitable b-catein has several isoforms, only the hyperphosphorylated isoform 1 associated with fascin. An increased $\beta$-catenin-fascin interaction was observed in HGF stimulated cells, and in Xenopus embryos injected with src kinase RNAs. The increased $\beta$-catenin association with fascin is correlated with increased levels of $\beta$-catenin phosphorylation. $\beta$-catenin, but not fascin, can be readily phosphorylated on tyrosine in vivo following src injection of embryos, or in vitro following v-src addition to purified protein components. These observations suggest a role of $\beta$-catenin phosphorylation in regulating its interaction with fascin, and src kinase may be an important regulator of the $\beta$-catenin-fascin association in vivo. The $\beta$-catenin-fascin interaction represents a novel catenin complex, that may conceivably regulate actin cytoskeletal structures, cell adhesion, and cellular motility, perhaps in a coordinate manner with its functions in cadherin and APC complexes. ^
Resumo:
Convincing evidence has accumulated to identify the Frizzled proteins as receptors for the Wnt growth factors. In parallel, a number of secreted frizzled-like proteins with a conserved N-terminal frizzled motif have been identified. One of these proteins, Frzb-1, binds Wnt-1 and Xwnt-8 proteins and antagonizes Xwnt-8 signaling in Xenopus embryos. Here we report that Frzb-1 blocks Wnt-1 induced cytosolic accumulation of β-catenin, a key component of the Wnt signaling pathway, in human embryonic kidney cells. Structure/function analysis reveals that complete removal of the frizzled domain of Frzb-1 abolishes the Wnt-1/Frzb-1 protein interaction and the inhibition of Wnt-1 mediated axis duplication in Xenopus embryos. In contrast, removal of the C-terminal portion of the molecule preserves both Frzb-Wnt binding and functional inhibition of Wnt signaling. Partial deletions of the Frzb-1 cysteine-rich domain maintain Wnt-1 interaction, but functional inhibition is lost. Taken together, these findings support the conclusion that the frizzled domain is necessary and sufficient for both activities. Interestingly, Frzb-1 does not block Wnt-5A signaling in a Xenopus functional assay, even though Wnt-5A coimmunoprecipitates with Frzb-1, suggesting that coimmunoprecipitation does not necessarily imply inhibition of Wnt function.
Resumo:
Early cleavages of Xenopus embryos were oriented in strong, static magnetic fields. Third-cleavage planes, normally horizontal, were seen to orient to a vertical plane parallel with a vertical magnetic field. Second cleavages, normally vertical, could also be oriented by applying a horizontal magnetic field. We argue that these changes in cleavage-furrow geometries result from changes in the orientation of the mitotic apparatus. We hypothesize that the magnetic field acts directly on the microtubules of the mitotic apparatus. Considerations of the length of the astral microtubules, their diamagnetic anisotropy, and flexural rigidity predict the required field strength for an effect that agrees with the data. This observation provides a clear example of a static magnetic-field effect on a fundamental cellular process, cell division.
Resumo:
In Wnt signaling, β-catenin and plakoglobin transduce signals to the nucleus through interactions with TCF-type transcription factors. However, when plakoglobin is artificially engineered to restrict it to the cytoplasm by fusion with the transmembrane domain of connexin (cnxPg), it efficiently induces a Wnt-like axis duplication phenotype in Xenopus. In Xenopus embryos, maternal XTCF3 normally represses ventral expression of the dorsalizing gene Siamois. Two models have been proposed to explain the Wnt-like activity of cnxPg: 1) that cnxPg inhibits the machinery involved in the turnover of cytosolic β-catenin, which then accumulates and inhibits maternal XTCF3, and 2) that cnxPg directly acts to inhibit XTCF3 activity. To distinguish between these models, we created a series of N-terminal deletion mutations of cnxPg and examined their ability to induce an ectopic axis in Xenopus, activate a TCF-responsive reporter (OT), stabilize β-catenin, and colocalize with components of the Wnt signaling pathway. cnxPg does not colocalize with the Wnt pathway component Dishevelled, but it does lead to the redistribution of APC and Axin, two proteins involved in the regulation of β-catenin turnover. Expression of cnxPg increases levels of cytosolic β-catenin; however, this effect does not completely explain its signaling activity. Although cnxPg and Wnt-1 stabilize β-catenin to similar extents, cnxPg activates OT to 10- to 20-fold higher levels than Wnt-1. Moreover, although LEF1 and TCF4 synergize with β-catenin and plakoglobin to activate OT, both suppress the signaling activity of cnxPg. In contrast, XTCF3 suppresses the signaling activity of both β-catenin and cnxPg. Both exogenous XLEF1 and XTCF3 are sequestered in the cytoplasm of Xenopus cells by cnxPg. Based on these data, we conclude that, in addition to its effects on β-catenin, cnxPg interacts with other components of the Wnt pathway, perhaps TCFs, and that these interactions contribute to its signaling activity.
Resumo:
The Xenopus cerberus gene encodes a secreted factor that is expressed in the anterior endomesoderm of gastrula stage embryos and can induce the formation of ectopic heads when its mRNA is injected into Xenopus embryos [Bouwmeester, T., Kim, S., Lu, B. & De Robertis, E. M. (1996) Nature (London) 382, 595–601]. Here we describe the existence of a cerberus-related gene, Cerr1, in the mouse. Cerr1 encodes a putative secreted protein that is 48% identical to cerberus over a 110-amino acid region. Analysis of a mouse interspecific backcross panel demonstrated that Cerr1 mapped to the central portion of mouse chromosome 4. In early gastrula stage mouse embryos, Cerr1 is expressed in the anterior visceral endoderm and in the anterior definitive endoderm. In somite stage embryos, Cerr1 expression is restricted to the most recently formed somites and in the anterior presomitic mesoderm. Germ layer explant recombination assays demonstrated that Cerr1-expressing somitic-presomitic mesoderm, but not older Cerr1-nonexpressing somitic mesoderm, was able to mimic the anterior neuralizing ability of anterior mesendoderm and maintain Otx2 expression in competent ectoderm. In most Lim1−/− headless embryos, Cerr1 expression in the anterior endoderm was weak or absent. These results suggest that Cerr1 may play a role in anterior neural induction and somite formation during mouse development.
Resumo:
We report identification of 9-cis-4-oxo-retinoic acid (9-cis-4-oxo-RA) as an in vivo retinoid metabolite in Xenopus embryos. 9-Cis-4-oxo-RA bound receptors (RARs) α, β, and γ as well as retinoid X receptors (RXRs) α, β, and γ in vitro. However, this retinoid displayed differential RXR activation depending on the response pathway used. Although it failed to activate RXRs in RXR homodimers, it activated RXRs and RARs synergistically in RAR-RXR heterodimers. 9-Cis-4-oxo-RA thus acted as a dimer-specific agonist. Considering that RAR-RXR heterodimers are major functional units involved in transducing retinoid signals during embryogenesis and that 9-cis-4-oxo-RA displayed high potency for modulating axial pattern formation in Xenopus, metabolism to 9-cis-4-oxo-RA may provide a mechanism to target retinoid action to this and other RAR-RXR heterodimer-mediated processes.
Resumo:
Caldesmon is phosphorylated by cdc2 kinase during mitosis, resulting in the dissociation of caldesmon from microfilaments. To understand the physiological significance of phosphorylation, we generated a caldesmon mutant replacing all seven cdc2 phosphorylation sites with Ala, and examined effects of expression of the caldesmon mutant on M-phase progression. We found that microinjection of mutant caldesmon effectively blocked early cell division of Xenopus embryos. Similar, though less effective, inhibition of cytokinesis was observed with Chinese hamster ovary (CHO) cells microinjected with 7th mutant. When mutant caldesmon was introduced into CHO cells either by protein microinjection or by inducible expression, delay of M-phase entry was observed. Finally, we found that 7th mutant inhibited the disassembly of microfilaments during mitosis. Wild-type caldesmon, on the other hand, was much less potent in producing these three effects. Because mutant caldesmon did not inhibit cyclin B/cdc2 kinase activity, our results suggest that alterations in microfilament assembly caused by caldesmon phosphorylation are important for M-phase progression.