924 resultados para XML, Information, Retrieval, Query, Language


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lattice valued fuzziness is more general than crispness or fuzziness based on the unit interval. In this work, we present a query language for a lattice based fuzzy database. We define a Lattice Fuzzy Structured Query Language (LFSQL) taking its membership values from an arbitrary lattice L. LFSQL can handle, manage and represent crisp values, linear ordered membership degrees and also allows membership degrees from lattices with non-comparable values. This gives richer membership degrees, and hence makes LFSQL more flexible than FSQL or SQL. In order to handle vagueness or imprecise information, every entry into an L-fuzzy database is an L-fuzzy set instead of crisp values. All of this makes LFSQL an ideal query language to handle imprecise data where some factors are non-comparable. After defining the syntax of the language formally, we provide its semantics using L-fuzzy sets and relations. The semantics can be used in future work to investigate concepts such as functional dependencies. Last but not least, we present a parser for LFSQL implemented in Haskell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of the bilingual and monolingual participation of the MIRACLE team in CLEF 2004 was to test the effect of combination approaches on information retrieval. The starting point was a set of basic components: stemming, transformation, filtering, generation of n-grams, weighting and relevance feedback. Some of these basic components were used in different combinations and order of application for document indexing and for query processing. A second order combination was also tested, mainly by averaging or selective combination of the documents retrieved by different approaches for a particular query.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the first set of experiments defined by the MIRACLE (Multilingual Information RetrievAl for the CLEf campaign) research group for some of the cross language tasks defined by CLEF. These experiments combine different basic techniques, linguistic-oriented and statistic-oriented, to be applied to the indexing and retrieval processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic Text Summarization has been shown to be useful for Natural Language Processing tasks such as Question Answering or Text Classification and other related fields of computer science such as Information Retrieval. Since Geographical Information Retrieval can be considered as an extension of the Information Retrieval field, the generation of summaries could be integrated into these systems by acting as an intermediate stage, with the purpose of reducing the document length. In this manner, the access time for information searching will be improved, while at the same time relevant documents will be also retrieved. Therefore, in this paper we propose the generation of two types of summaries (generic and geographical) applying several compression rates in order to evaluate their effectiveness in the Geographical Information Retrieval task. The evaluation has been carried out using GeoCLEF as evaluation framework and following an Information Retrieval perspective without considering the geo-reranking phase commonly used in these systems. Although single-document summarization has not performed well in general, the slight improvements obtained for some types of the proposed summaries, particularly for those based on geographical information, made us believe that the integration of Text Summarization with Geographical Information Retrieval may be beneficial, and consequently, the experimental set-up developed in this research work serves as a basis for further investigations in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La recherche d'informations s'intéresse, entre autres, à répondre à des questions comme: est-ce qu'un document est pertinent à une requête ? Est-ce que deux requêtes ou deux documents sont similaires ? Comment la similarité entre deux requêtes ou documents peut être utilisée pour améliorer l'estimation de la pertinence ? Pour donner réponse à ces questions, il est nécessaire d'associer chaque document et requête à des représentations interprétables par ordinateur. Une fois ces représentations estimées, la similarité peut correspondre, par exemple, à une distance ou une divergence qui opère dans l'espace de représentation. On admet généralement que la qualité d'une représentation a un impact direct sur l'erreur d'estimation par rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représentations des documents et des requêtes a longtemps été un problème central de la recherche d'informations. Le but de cette thèse est de proposer des nouvelles méthodes pour estimer les représentations des documents et des requêtes, la relation de pertinence entre eux et ainsi modestement avancer l'état de l'art du domaine. Nous présentons quatre articles publiés dans des conférences internationales et un article publié dans un forum d'évaluation. Les deux premiers articles concernent des méthodes qui créent l'espace de représentation selon une connaissance à priori sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci nous amènent à présenter un nouveau modèle de recherche d'informations qui diffère des modèles existants sur le plan théorique et de l'efficacité expérimentale. Les deux derniers articles marquent un changement fondamental dans l'approche de construction des représentations. Ils bénéficient notamment de l'intérêt de recherche dont les techniques d'apprentissage profond par réseaux de neurones, ou deep learning, ont fait récemment l'objet. Ces modèles d'apprentissage élicitent automatiquement les caractéristiques importantes pour la tâche demandée à partir d'une quantité importante de données. Nous nous intéressons à la modélisation des relations sémantiques entre documents et requêtes ainsi qu'entre deux ou plusieurs requêtes. Ces derniers articles marquent les premières applications de l'apprentissage de représentations par réseaux de neurones à la recherche d'informations. Les modèles proposés ont aussi produit une performance améliorée sur des collections de test standard. Nos travaux nous mènent à la conclusion générale suivante: la performance en recherche d'informations pourrait drastiquement être améliorée en se basant sur les approches d'apprentissage de représentations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La recherche d'informations s'intéresse, entre autres, à répondre à des questions comme: est-ce qu'un document est pertinent à une requête ? Est-ce que deux requêtes ou deux documents sont similaires ? Comment la similarité entre deux requêtes ou documents peut être utilisée pour améliorer l'estimation de la pertinence ? Pour donner réponse à ces questions, il est nécessaire d'associer chaque document et requête à des représentations interprétables par ordinateur. Une fois ces représentations estimées, la similarité peut correspondre, par exemple, à une distance ou une divergence qui opère dans l'espace de représentation. On admet généralement que la qualité d'une représentation a un impact direct sur l'erreur d'estimation par rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représentations des documents et des requêtes a longtemps été un problème central de la recherche d'informations. Le but de cette thèse est de proposer des nouvelles méthodes pour estimer les représentations des documents et des requêtes, la relation de pertinence entre eux et ainsi modestement avancer l'état de l'art du domaine. Nous présentons quatre articles publiés dans des conférences internationales et un article publié dans un forum d'évaluation. Les deux premiers articles concernent des méthodes qui créent l'espace de représentation selon une connaissance à priori sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci nous amènent à présenter un nouveau modèle de recherche d'informations qui diffère des modèles existants sur le plan théorique et de l'efficacité expérimentale. Les deux derniers articles marquent un changement fondamental dans l'approche de construction des représentations. Ils bénéficient notamment de l'intérêt de recherche dont les techniques d'apprentissage profond par réseaux de neurones, ou deep learning, ont fait récemment l'objet. Ces modèles d'apprentissage élicitent automatiquement les caractéristiques importantes pour la tâche demandée à partir d'une quantité importante de données. Nous nous intéressons à la modélisation des relations sémantiques entre documents et requêtes ainsi qu'entre deux ou plusieurs requêtes. Ces derniers articles marquent les premières applications de l'apprentissage de représentations par réseaux de neurones à la recherche d'informations. Les modèles proposés ont aussi produit une performance améliorée sur des collections de test standard. Nos travaux nous mènent à la conclusion générale suivante: la performance en recherche d'informations pourrait drastiquement être améliorée en se basant sur les approches d'apprentissage de représentations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Document ranking is an important process in information retrieval (IR). It presents retrieved documents in an order of their estimated degrees of relevance to query. Traditional document ranking methods are mostly based on the similarity computations between documents and query. In this paper we argue that the similarity-based document ranking is insufficient in some cases. There are two reasons. Firstly it is about the increased information variety. There are far too many different types documents available now for user to search. The second is about the users variety. In many cases user may want to retrieve documents that are not only similar but also general or broad regarding a certain topic. This is particularly the case in some domains such as bio-medical IR. In this paper we propose a novel approach to re-rank the retrieved documents by incorporating the similarity with their generality. By an ontology-based analysis on the semantic cohesion of text, document generality can be quantified. The retrieved documents are then re-ranked by their combined scores of similarity and the closeness of documents’ generality to the query’s. Our experiments have shown an encouraging performance on a large bio-medical document collection, OHSUMED, containing 348,566 medical journal references and 101 test queries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a text mining method called LRD (latent relation discovery), which extends the traditional vector space model of document representation in order to improve information retrieval (IR) on documents and document clustering. Our LRD method extracts terms and entities, such as person, organization, or project names, and discovers relationships between them by taking into account their co-occurrence in textual corpora. Given a target entity, LRD discovers other entities closely related to the target effectively and efficiently. With respect to such relatedness, a measure of relation strength between entities is defined. LRD uses relation strength to enhance the vector space model, and uses the enhanced vector space model for query based IR on documents and clustering documents in order to discover complex relationships among terms and entities. Our experiments on a standard dataset for query based IR shows that our LRD method performed significantly better than traditional vector space model and other five standard statistical methods for vector expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Similar to Genetic algorithm, Evolution strategy is a process of continuous reproduction, trial and selection. Each new generation is an improvement on the one that went before. This paper presents two different proposals based on the vector space model (VSM) as a traditional model in information Retrieval (TIR). The first uses evolution strategy (ES). The second uses the document centroid (DC) in query expansion technique. Then the results are compared; it was noticed that ES technique is more efficient than the other methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper addresses issues related to the design of a graphical query mechanism that can act as an interface to any object-oriented database system (OODBS), in general, and the object model of ODMG 2.0, in particular. In the paper a brief literature survey of related work is given, and an analysis methodology that allows the evaluation of such languages is proposed. Moreover, the user's view level of a new graphical query language, namely GOQL (Graphical Object Query Language), for ODMG 2.0 is presented. The user's view level provides a graphical schema that does not contain any of the perplexing details of an object-oriented database schema, and it also provides a foundation for a graphical interface that can support ad-hoc queries for object-oriented database applications. We illustrate, using an example, the user's view level of GOQL

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissertation presented for obtaining the Master’s Degree in Electrical Engineering and Computer Science, at Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Diss., 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desarrollo de un sistema capaz de procesar consultas en lenguaje natural introducidas por el usuario mediante el teclado. El sistema es capaz de responder a consultas en castellano, relacionadas con un dominio de aplicación representado mediante una base de datos relacional.

Relevância:

100.00% 100.00%

Publicador: