983 resultados para X-LINKED INHERITANCE
Resumo:
To determine whether human X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome (IPEX; MIM 304930) is the genetic equivalent of the scurfy (sf) mouse, we sequenced the human ortholog (FOXP3) of the gene mutated in scurfy mice (Foxp3), in IPEX patients. We found four non-polymorphic mutations. Each mutation affects the forkhead/winged-helix domain of the scurfin protein, indicating that the mutations may disrupt critical DNA interactions.
Resumo:
Mental retardation and epilepsy often occur together. They are both heterogeneous conditions with acquired and genetic causes. Where causes are primarily genetic, major advances have been made in unraveling their molecular basis. The human X chromosome alone is estimated to harbor more than 100 genes that, when mutated, cause mental retardation(1). At least eight autosomal genes involved in idiopathic epilepsy have been identified(2), and many more have been implicated in conditions where epilepsy is a feature. We have identified mutations in an X chromosome-linked, Aristaless-related, homeobox gene (ARX), in nine families with mental retardation (syndromic and nonspecific), various forms of epilepsy, including infantile spasms and myoclonic seizures, and dystonia. Two recurrent mutations, present in seven families, result in expansion of polyalanine tracts of the ARX protein. These probably cause protein aggregation, similar to other polyalanine(3) and polyglutamine(4) disorders. In addition, we have identified a missense mutation within the ARX homeodomain and a truncation mutation. Thus, it would seem that mutation of ARX is a major contributor to X-linked mental retardation and epilepsy.
Resumo:
SUMMARY We describe the case of an eight-year-old boy with X-linked agammaglobulinemia who developed mild varicella despite regular intravenous immunoglobulin (IVIG) therapy. He maintained protective antibody levels against varicella and the previous batches of IVIG that he received had adequate varicella-specific IgG levels. The case illustrates that IVIG may not prevent VZV infection.
Resumo:
Patients with defective ectodysplasin A (EDA) are affected by X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition characterized by sparse hair, inability to sweat, decreased lacrimation, frequent pulmonary infections, and missing and malformed teeth. The canine model of XLHED was used to study the developmental impact of EDA on secondary dentition, since dogs have an entirely brachyodont, diphyodont dentition similar to that in humans, as opposed to mice, which have only permanent teeth (monophyodont dentition), some of which are very different (aradicular hypsodont) than brachyodont human teeth. Also, clinical signs in humans and dogs with XLHED are virtually identical, whereas several are missing in the murine equivalent. In our model, the genetically missing EDA was compensated for by postnatal intravenous administration of soluble recombinant EDA. Untreated XLHED dogs have an incomplete set of conically shaped teeth similar to those seen in human patients with XLHED. After treatment with EDA, significant normalization of adult teeth was achieved in four of five XLHED dogs. Moreover, treatment restored normal lacrimation and resistance to eye and airway infections and improved sweating ability. These results not only provide proof of concept for a potential treatment of this orphan disease but also demonstrate an essential role of EDA in the development of secondary dentition.
Resumo:
Purpose: To assess the phenotype of patients in a large 3 generation Swiss family with X-linked retinitis pigmentosa (XLRP) due to a novel nonsense mutation Glu20stop in RP2 gene and to correlate with the genotype. Methods: 6 affected patients (1 male, 5 females, age range: 23 - 73 years) were assessed with a complete ophthalmologic examination. All had fundus autofluorescence images, standardised electroretinography, Goldmann visual fields and Optical Coherence Tomography. In addition, medical records of 2 affected male patients were reviewed. Blood sample was taken for molecular analysis. Results: The male patients were severely affected at a young age with early macular involvement. The youngest 23 y old male had also high myopia and vision of less than 0.05 according to Snellen EDTRS chart bilaterally. All 5 female carriers had some degree of rod-cone dystrophy, but no macular involvement. The visual acuity was 1.0 in the younger carriers, while the 73 years old had VA of 0.5. Two females had mild myopia (range -0.75 to -2) and one had anisometropia of 3.5D, with the more severely affected eye being myopic. Three out of 5 female carriers had optic nerve drusen. Conclusions: We report a novel Glu20stop mutation in RP2 gene, which is a rare cause of XLRP. Our description of severe phenotype in male patients with high myopia and early macular atrophy confirms previous reports. Unlike previous reports, all our female carriers had RP, but not macular involvement or high myopia. The identifiable phenotype for RP2-XLRP aids in clinical diagnosis and targeted genetic screening.
Resumo:
Patients with defective ectodysplasin A (EDA) have X-linked hypohidrotic ectodermal dysplasia (XLHED; OMIM#305100), a condition comprising hypotrichosis, inability to sweat, abnormal teeth, and frequent pulmonary infections. The XLHED dogs show the same clinical signs as humans with the disorder, including frequent respiratory infections that can be fatal. The respiratory disease in humans and dogs is thought to be due to the absence of tracheal and bronchial glands which are a vital part of the mucociliary clearance mechanism. In our XLHED model, the genetically missing EDA was replaced by postnatal intravenous administration of recombinant EDA resulting in long-term, durable corrective effect on adult, permanent dentition. After treatment with EDA, significant correction of the missing tracheal and bronchial glands was achieved in those dogs that received higher doses of EDA. Moreover, successful treatment resulted in the presence of esophageal glands, improved mucociliary clearance, and the absence of respiratory infection. These results demonstrate that a short-term treatment at a neonatal age with a recombinant protein can reverse a developmental disease and result in vastly improved quality of life.
Resumo:
Background: Aproximately 5–10% of cases of mental retardation in males are due to copy number variations (CNV) on the X chromosome. Novel technologies, such as array comparative genomic hybridization (aCGH), may help to uncover cryptic rearrangements in X-linked mental retardation (XLMR) patients. We have constructed an X-chromosome tiling path array using bacterial artificial chromosomes (BACs) and validated it using samples with cytogenetically defined copy number changes. We have studied 54 patients with idiopathic mental retardation and 20 controls subjects. Results: Known genomic aberrations were reliably detected on the array and eight novel submicroscopic imbalances, likely causative for the mental retardation (MR) phenotype, were detected. Putatively pathogenic rearrangements included three deletions and five duplications (ranging between 82 kb to one Mb), all but two affecting genes previously known to be responsible for XLMR. Additionally, we describe different CNV regions with significant different frequencies in XLMR and control subjects (44% vs. 20%). Conclusion:This tiling path array of the human X chromosome has proven successful for the detection and characterization of known rearrangements and novel CNVs in XLMR patients.
Resumo:
Mutations in the epithelial morphogen ectodysplasin-A (EDA), a member of the tumor necrosis factor (TNF) family, are responsible for the human disorder X-linked hypohidrotic ectodermal dysplasia (XLHED) characterized by impaired development of hair, eccrine sweat glands, and teeth. EDA-A1 and EDA-A2 are two splice variants of EDA, which bind distinct EDA-A1 and X-linked EDA-A2 receptors. We identified a series of novel EDA mutations in families with XLHED, allowing the identification of the following three functionally important regions in EDA: a C-terminal TNF homology domain, a collagen domain, and a furin protease recognition sequence. Mutations in the TNF homology domain impair binding of both splice variants to their receptors. Mutations in the collagen domain can inhibit multimerization of the TNF homology region, whereas those in the consensus furin recognition sequence prevent proteolytic cleavage of EDA. Finally, a mutation affecting an intron splice donor site is predicted to eliminate specifically the EDA-A1 but not the EDA-A2 splice variant. Thus a proteolytically processed, oligomeric form of EDA-A1 is required in vivo for proper morphogenesis.
Resumo:
Theory states that genes on the sex chromosomes have stronger effects on sexual dimorphism than genes on the autosomes. Although empirical data are not necessarily consistent with this theory, this situation may prevail because the relative role of sex-linked and autosomally inherited genes on sexual dimorphism has rarely been evaluated. We estimated the quantitative genetics of three sexually dimorphic melanin-based traits in the barn owl (Tyto alba), in which females are on average darker reddish pheomelanic and display more and larger black eumelanic feather spots than males. The plumage traits with higher sex-linked inheritance showed lower heritability and genetic correlations, but contrary to prediction, these traits showed less pronounced sexual dimorphism. Strong offspring sexual dimorphism primarily resulted from daughters not expressing malelike melanin-based traits and from sons expressing femalelike traits to similar degrees as their sisters. We conclude that in the barn owl, polymorphism at autosomal genes rather than at sex-linked genes generate variation in sexual dimorphism in melanin-based traits.
Resumo:
Early in female mammalian embryonic development, cells randomly inactivate one of the two X chromosomes to achieve overall equal inactivation of parental X-linked alleles. Hcfc1 is a highly conserved X-linked mouse gene that encodes HCF-1 - a transcriptional co-regulator implicated in cell proliferation in tissue culture cells. By generating a Cre-recombinase inducible Hcfc1 knock-out (Hcfc1(lox)) allele in mice, we have probed the role of HCF-1 in actively proliferating embryonic cells and in cell-cycle re-entry of resting differentiated adult cells using a liver regeneration model. HCF-1 function is required for both extraembryonic and embryonic development. In heterozygous Hcfc1(lox/+) female embryos, however, embryonic epiblast-specific Cre-induced Hcfc1 deletion (creating an Hcfc1(epiKO) allele) around E5.5 is well tolerated; it leads to a mixture of HCF-1-positive and -negative epiblast cells owing to random X-chromosome inactivation of the wild-type or Hcfc1(epiKO) mutant allele. At E6.5 and E7.5, both HCF-1-positive and -negative epiblast cells proliferate, but gradually by E8.5, HCF-1-negative cells disappear owing to cell-cycle exit and apoptosis. Although generating a temporary developmental retardation, the loss of HCF-1-negative cells is tolerated, leading to viable heterozygous offspring with 100% skewed inactivation of the X-linked Hcfc1(epiKO) allele. In resting adult liver cells, the requirement for HCF-1 in cell proliferation was more evident as hepatocytes lacking HCF-1 fail to re-enter the cell cycle and thus to proliferate during liver regeneration. The survival of the heterozygous Hcfc1(epiKO/+) female embryos, even with half the cells genetically compromised, illustrates the developmental plasticity of the post-implantation mouse embryo - in this instance, permitting survival of females heterozygous for an X-linked embryonic lethal allele.
Resumo:
Chronic granulomatous disease (CGD) is an inherited disorder of the innate immune system characterized by a defective oxidative burst of phagocytes and subsequent impairment of their microbicidal activity. Mutations in one of the NADPH-oxidase components affect gene expression or function of this system, leading to the phenotype of CGD. Defects in gp91-phox lead to X-linked CGD, responsible for approximately 70% of CGD cases. Investigation of the highly heterogeneous genotype of CGD patients includes mutation analysis, Northern blot or Western blot assays according to the particular case. The aim of the present study was to use reverse transcription (RT)-PCR for the analysis of molecular defects responsible for X-linked CGD in eight Brazilian patients and to assess its potential for broader application to molecular screening in CGD. Total RNA was prepared from Epstein B virus-transformed B-lymphocytes and reverse transcribed using random hexamers. The resulting cDNA was PCR-amplified by specific and overlapping pairs of primers designed to amplify three regions of the gp91-phox gene: exons 1-5, 3-9, and 7-13. This strategy detected defective gp91-phox expression in seven patients. The RT-PCR results matched clinical history, biochemical data (nitroblue tetrazolium or superoxide release assay) and available mutation analysis in four cases. In three additional cases, RT-PCR results matched clinical history and biochemical data. In another case, RT-PCR was normal despite a clinical history compatible with CGD and defective respiratory burst. We conclude that this new application of RT-PCR analysis - a simple, economical and rapid method - was appropriate for screening molecular defects in 7 of 8 X-linked CGD patients.
Resumo:
A successful gene therapy clinical trial that also encountered serious adverse effects has sparked extensive study and debate about the future directions for retrovirus-mediated interventions. Treatment of X-linked severe combined immunodeficiency with an oncoretrovirus harboring a normal copy of the gc gene was applied in two clinical trials, essentially curing 13 of 16 infants, restoring a normal immune system without the need for additional immune-related therapies. Approximately 3 years after their gene therapy, tragically, 3 of these children, all from the same trial, developed leukemia as a result of this experimental treatment. The current understanding of the mechanism behind this leukemogenesis involves three critical and cooperating factors, i.e., viral integration, oncogene activation, and the function of the therapeutic gene. In this review, we will explore the causes of this unwanted event and some of the possibilities for reducing the risk of its reoccurrence.
Resumo:
Mutations in Bruton's tyrosine kinase (BTK) gene are responsible for X-linked agammaglobulinemia (XLA), which is characterized by recurrent bacterial infections, profound hypogammaglobulinemia, and decreased numbers of mature B cells in peripheral blood. We evaluated 5 male Brazilian patients, ranging from 3 to 10 years of age, from unrelated families, whose diagnosis was based on recurrent infections, markedly reduced levels of IgM, IgG and IgA, and circulating B cell numbers <2%. BTK gene analysis was carried out using PCR-SSCP followed by sequencing. We detected three novel (Ala347fsX55, I355T, and Thr324fsX24) and two previously reported mutations (Q196X and E441X). Flow cytometry revealed a reduced expression of BTK protein in patients and a mosaic pattern of BTK expression was obtained from mothers, indicating that they were XLA carriers.