923 resultados para Wood longitudinal modulus of elasticity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element models of bones can be created by deriving geometry from anx-ray CT scan. Material properties such as the elastic modulus can then be applied using either a single or set of homogeneous values, or individual elements can have local values mapped onto them. Values for the elastic modulus can be derived from the CT density values using an elasticityversus density relationship. Many elasticity–density relationships have been reported in the literature for human bone. However, while ovine in vivo models are common in orthopaedic research, no work has been done to date on creating FE models of ovine bones. To create these models and apply relevant material properties, an ovine elasticity-density relationship needs to be determined. Using fresh frozen ovine tibias the apparent density of regions of interest was determined from a clinical CT scan. The bones were the sectioned into cuboid samples of cortical bone from the regions of interest. Ultrasound was used to determine the elastic modulus in each of three directions – longitudinally, radially and tangentially. Samples then underwent traditional compression testing in each direction. The relationships between apparent density and both ultrasound, and compression modulus in each directionwere determined. Ultrasound testing was found to be a highly repeatable non-destructive method of calculating the elastic modulus, particularly suited to samples of this size. The elasticity-density relationships determined in the longitudinal direction were very similar between the compression and ultrasound data over the density range examined.A clear difference was seen in the elastic modulus between the longitudinal and transverse directions of the bone samples, and a transverse elasticity-density relationship is also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 2 × 2 factorial combination of thinned or unthinned, and pruned or unpruned 11-year-old Eucalyptus dunnii (DWG) and 12-year-old Corymbia citriodora subsp. variegata (CCV) was destructively sampled to provide 60 trees in total per species. Two 1.4 m long billets were cut from each tree and were rotary veneered in a spindleless lathe down to a 45 mm diameter core to expose knots which were classified as either alive, partially occluded or fully occluded. Non-destructive evaluation of a wider range of thinning treatments available in these trials was undertaken with Pilodyn and Fakopp tools. Disc samples were also taken for basic density and modulus of elasticity. Differences between treatments for all wood property assessments were generally small and not significantly different.Thinning and pruning had little effect on the stem diameter growth required to achieve occlusion, therefore occlusion would be more rapid after thinning due to more rapid stem diameter growth. The difference between the treatments of greatest management interest, thinned and pruned (T&P) and unthinned and unpruned (UT&UP) were small. The production of higher value clear wood produced after all knots had occluded, measured as the average stem diameter growth over occlusion of the three outermost knots, was approximately 2 centimetres diameter. Two of the treatments can be ruled out as viable management alternatives: (i) the effect of thinning without pruning (T&UP) is clear, leading to a large inner core of stem wood containing knots (large knotty core diameter) and (ii) pruning without thinning (UT&P) results in a small knotty core diameter, however the tree and therefore log diameters are also small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Key message Eucalyptus pellita demonstrated good growth and wood quality traits in this study, with young plantation grown timber being suitable for both solid and pulp wood products. All traits examined were under moderate levels of genetic control with little genotype by environment interaction when grown on two contrasting sites in Vietnam. Context Eucalyptus pellita currently has a significant role in reforestation in the tropics. Research to support expanded of use of this species is needed: particularly, research to better understand the genetic control of key traits will facilitate the development of genetically improved planting stock. Aims This study aimed to provide estimates of the heritability of diameter at breast height over bark, wood basic density, Kraft pulp yield, modulus of elasticity and microfibril angle, and the genetic correlations among these traits, and understand the importance of genotype by environment interactions in Vietnam. Methods Data for diameter and wood properties were collected from two 10-year-old, open-pollinated progeny trials of E. pellita in Vietnam that evaluated 104 families from six native range and three orchard sources. Wood properties were estimated from wood samples using near-infrared (NIR) spectroscopy. Data were analysed using mixed linear models to estimate genetic parameters (heritability, proportion of variance between seed sources and genetic correlations). Results Variation among the nine sources was small compared to additive variance. Narrow-sense heritability and genetic correlation estimates indicated that simultaneous improvements in most traits could be achieved from selection among and within families as the genetic correlations among traits were either favourable or close to zero. Type B genetic correlations approached one for all traits suggesting that genotype by environment interactions were of little importance. These results support a breeding strategy utilizing a single breeding population advanced by selecting the best individuals across all seed sources. Conclusion Both growth and wood properties have been evaluated. Multi-trait selection for growth and wood property traits will lead to more productive populations of E. pellita both with improved productivity and improved timber and pulp properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three different Norway spruce cutting clones growing in three environments with different soil and climatic conditions were studied. The purpose was to follow variation in the radial growth rate, wood properties and lignin content and to modify wood lignin with a natural monolignol, coniferyl alcohol, by making use of inherent wood peroxidases. In addition, the incorporation of chlorinated anilines into lignin was studied with synthetic model compounds and synthetic lignin preparations to show whether unnatural compounds originating from pesticides could be bound in the lignin polymer. The lignin content of heartwood, sapwood and earlywood was determined by applying Fourier transform infrared (FTIR) spectroscopy and a principal component regression (PCR) technique. Wood blocks were treated with coniferyl alcohol by using a vacuum impregnation method. The effect of impregnation was assessed by FTIR and by a fungal decay test. Trees from a fertile site showed the highest growth rate and sapwood lignin content and the lowest latewood proportion, weight density and modulus of rupture (MOR). Trees from a medium fertile site had the lowest growth rate and the highest latewood proportion, weight density, modulus of elasticity (MOE) and MOR. The most rapidly growing clone showed the lowest latewood proportion, weight density, MOE and MOR. The slowest growing clone had the lowest sapwood lignin content and the highest latewood proportion, weight density, MOE and MOR. Differences between the sites and clones were small, while fairly large variation was found between the individual trees and growing seasons. The cutting clones maintained clone-dependent wood properties in the different growing sites although variation between trees was high and climatic factors affected growth. The coniferyl alcohol impregnation increased the content of different lignin-type phenolic compounds in the wood as well as wood decay resistance against a white-rot fungus, Coriolus versicolor. During the synthetic lignin preparation 3,4-dichloroaniline became bound by a benzylamine bond to β-O-4 structures in the polymer and it could not be released by mild acid hydrolysis. The natural monolignol, coniferyl alcohol, and chlorinated anilines could be incorporated into the lignin polymer in vivo and in vitro, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed, with the aid of analysis of variance (ANOVA), to investigate and quantify the influence of moisture ranging between 12% and over 30% (fiber saturation) on the mechanical properties: strength and modulus of elasticity in compression and in tension parallel to grain; modulus of rupture and modulus of elasticity in static bending; shear strength parallel to grain considering wood species Ipê (Tabebuia sp) and Angelim Araroba (Vataireopsis araroba). Tests were performed according to the assumptions and calculating methods Brazilian standard ABNT NBR 7190, Anexx B, totalizing 400 tests. Results of ANOVA revealed a significant reduction (16% on average) for mechanical properties wood due to the increase in moisture content from 12% to over 30% (fiber saturation). The same behavior also occurred when assembly containing the two species was considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tests used to obtain the stiffness properties of wood are made with two loading cycles, as defined by the Brazilian standard ABNT NBR 7190 (Design of Timber Structures). However, the possibility of reducing the number of cycles allows decrease the operating time of the machine, resulting in reduced spending on electricity used during the tests. This research aimed to investigate, with the aid of the analysis of variance (ANOVA), the influence of the use of three load cycles to obtain the modulus of elasticity in compression parallel to grain (Ec0), in tensile parallel to the grain (Et0), in bending (Em) and in compression perpendicular to the grain (Ec90) of Angico Preto (Anadenanthera macrocarpa) wood specie. For the number of cycles and stiffness were manufactured 12 samples, totaling 144 specimens. The results of the ANOVA revealed statistical equivalence between the stiffness properties for both load cycle numbers evaluated, indicating that it is possible to carry out the tests with a single charge cycle, allowing savings in time and energy in the operation of the equipment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bernoulli's model for vibration of beams is often used to make predictions of bending modulus of elasticity when using dynamic tests. However this model ignores the rotary inertia and shear. Such effects can be added to the solution of Bernoulli's equation by means of the correction proposed by Goens (1931) or by Timoshenko (1953). But to apply these corrections it is necessary to know the E/G ratio of the material. The objective of this paper is the determination of the E/G ratio of wood logs by adjusting the analytical solution of the Timoshenko beam model to the dynamic testing data of 20 Eucalyptus citriodora logs. The dynamic testing was performed with the logs in free-free suspension. To find the stiffness properties of the logs, the residue minimization was carried out using the Genetic Algorithm (GA). From the result analysis one can reasonably assume E/G = 20 for wood logs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The grading of structural lumber besides contributing for increasing the structure's safety, due to the reduction of the material variability, also allows its rational use. Due to the good correlation between strength and bending stiffness, the latter has been used in estimating the mechanical strength of lumber pieces since the 60's. For industrial application, there are equipment and techniques to evaluate the bending stiffness of lumber, through dynamic tests such as the longitudinal vibration technique, also known as stress wave, and the transverse vibration technique. This study investigated the application of these two techniques in the assessment of the modulus of elasticity in bending of Teca beams (Tectona grandis), from reforestation, and of the tropical species Guajara (Micropholis venulosa). The modulus of elasticity estimated by dynamic tests showed good correlation with the modulus measured in the static bending test. Meantime, we observed that the accuracy of the longitudinal vibration technique was significantly reduced in the evaluation of the bending stiffness of Teca pieces due to the knots existing in this species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the influence of extractives, lignin and holocellulose contents on performance index (PI) of seven woods used or tested for violin bows. Woods with higher values of this index (PI = root MOE/rho, where MOE is modulus of elasticity and rho is density) have a higher bending stiffness at a given mass, which can be related to bow wood quality. Extractive content was negatively correlated with PI in Caesalpinia echinata, Hanclroanthus sp. and Astronium lecointei. In C. echinata holocellulose was positively correlated with PI. These results need to be further explored with more samples and by testing additional wood properties. Although the chemical constituents could provide an indication of quality, it is not possible to establish appropriate woods for bows solely by examining their chemical constituents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wood plastic composites (WPCs) have gained popularity as building materials because of their usefulness in replacing solid wood in a variety of applications. These composites are promoted as being low-maintenance, high-durability products. However, it has been shown that WPCs exposed to weathering may experience a color change and/or loss in mechanical properties. An important requirement for building materials used in outdoor applications is the retention of their aesthetic qualities and mechanical properties during service life. Therefore, it is critical to understand the photodegradation mechanisms of WPCs exposed to UV radiation and to develop approaches to stabilize these composites (both unstabilized and stabilized) as well as the effect of weathering on the color fade and the retention of mechanical properties were characterized. Since different methods of manufacturing WPCs lead to different surface characteristics, which can influence weathering, the effect of manufacturing method on the photodegradation of WPCs was investigated first. Wood flour (WF) filled high-density polyethylene (HDPE) composite samples were either injection molded, extruded, or extruded and then planed. Fourier transform infrared (FTIR) spectroscopy was used to monitor the surface chemistry of the manufactured composites. The spectra showed that the surface of planed samples had more wood component than extruded and injection molded samples, respectively. After weathering, the samples were analyzed for color fade, and loss of flexural properties. The final lightness of the composites was not dependent upon the manufacturing method. However the mechanical property loss was dependent upon manufacturing method. The samples with more wood component at the surface (planed samples) experienced a larger percentage of total loss in flexural properties after weathering due to a greater effect of moisture on the samples. The change in surface chemistry of HDPE and WF/HDPE composites after weathering was studied using spectroscopic techniques. X-ray photoelectron spectroscopy (XPS) was used to characterize the occurrence of surface oxidation whereas FTIR spectroscopy was used to monitor the development of degradation products, such as carbonyl groups and vinyl groups, and to determine changes in HDPE crystallinity. Surface oxidation occurred immediately after exposure for both the neat HDPE and WF/HDPE composites. After weathering, the surface of the WF/HDPE composites was oxidized to a greater extent than the neat HDPE after weathering. This suggests that photodegradation is exacerbated by the addition of the carbonyl functional groups of the wood fibers within the HDPE atrix during composite manufacturing. While neat HDPE may undergo cross-linking in the initial stages of accelerated weathering, the WF may physically hinder the ability of the HDPE to cross-link resulting in the potential for HDPE chain scission to dominate in the initial weathering stages of the WF/HDPE composites. To determine which photostabilizers are most effective for WF/HDPE composites, factorial experimental designes were used to determine the effects of adding two hindered amine light stabilizers, an ultraviolet absorber, and a pigment on the color made and mechanical properties of both unweathered and UV weathered samples. Both the pigment and ultraviolet absorber were more effective photostabilizers for WF/HDPE composites than hinder amine light stabilizers. The ineffectiveness of hindered amine light stabilizers in protecting WPCs against UV radiation was attribuated to the acid/base reactions occurring between the WF and hindered amine light stabilizer. The efficiency of an ultraviolet absorber and/or pigment was also examined by incorporating different concentration of an ultraviolet absorber and/or pigment into WF/HDPE composites. Color change and flexural properties were determined after accelerated UV weathering. The lightness of the composite after weathering was influenced by the concentration of both the ultraviolet absorber by masking the bleaching wood component as well as blocking UV light. Flexural MOE loss was influenced by an increase in ultraviolet absorber concentration, but increasing pigment concentration from 1 to 2% had little influence on MOE loss. However, increasing both ultraviolet absorber and pigment concentration resulted in improved strength properties over the unstabilized composites after 3000 h of weather. Finally, the change in surface chemistry due to weathering of WF/HDPE composites that were either unstabilized or stabilized with an ultraviolet absorber and/or pigment was analyzed using FTIR spectroscopy. The samples were tested for loss in modulus of elasticity, carbonyl and vinyl group formation at the surface, and change in HDPE crystallinity. It was concluded that structural changes in the samples; carbonyl group formation, terminal vinyl group formation, and crystallinity changes cannot reliably be used to predict changes in modulus of elasticity using a simple linear relationship. The effect of cross-linking, chain scission, and crystallinity changes due to ultraviolet exposure as well as the interfacial degradation due to moisture exposure are inter-related factors when weathering HDPE and WF/HDPE composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eucalyptus pellita demonstrated good growth and wood quality traits in this study, with young plantation grown timber being suitable for both solid and pulp wood products. All traits examined were under moderate levels of genetic control with little genotype by environment interaction when grown on two contrasting sites in Vietnam. Eucalyptus pellita currently has a significant role in reforestation in the tropics. Research to support expanded of use of this species is needed: particularly, research to better understand the genetic control of key traits will facilitate the development of genetically improved planting stock. This study aimed to provide estimates of the heritability of diameter at breast height over bark, wood basic density, Kraft pulp yield, modulus of elasticity and microfibril angle, and the genetic correlations among these traits, and understand the importance of genotype by environment interactions in Vietnam. Data for diameter and wood properties were collected from two 10-year-old, open-pollinated progeny trials of E. pellita in Vietnam that evaluated 104 families from six native range and three orchard sources. Wood properties were estimated from wood samples using near-infrared (NIR) spectroscopy. Data were analysed using mixed linear models to estimate genetic parameters (heritability, proportion of variance between seed sources and genetic correlations). Variation among the nine sources was small compared to additive variance. Narrow-sense heritability and genetic correlation estimates indicated that simultaneous improvements in most traits could be achieved from selection among and within families as the genetic correlations among traits were either favourable or close to zero. Type B genetic correlations approached one for all traits suggesting that genotype by environment interactions were of little importance. These results support a breeding strategy utilizing a single breeding population advanced by selecting the best individuals across all seed sources. Both growth and wood properties have been evaluated. Multi-trait selection for growth and wood property traits will lead to more productive populations of E. pellita both with improved productivity and improved timber and pulp properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is strong evidence to show that beliefs about knowing and knowledge held by individuals (personal epistemologies) influence preservice teachers’ learning strategies and learning outcomes (Muis, 2004). However, we know very little about how preservice teachers’ personal epistemologies change as they progress through their teacher education programs. This study investigated changes in personal epistemology and beliefs about learning for a group of preservice teachers as they progressed through the four years of a Bachelor of Education degree. Preservice teachers completed the Epistemological Beliefs Survey (EBS, Kardash & Wood, 2000) when they commenced their course (Time 1) when they were in the 3rd year of their course (Time 2) and then again in the final year of their degree (Time 3). Findings indicated that there were significant changes in preservice teachers’ personal epistemologies between course entry and the final year of their course across all but one of the dimensions measured. Results are discussed in terms of the implications for teaching and teacher education.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The common goal of tissue engineering is to develop substitutes that can closely mimic the structure of extracellular matrix (ECM). However, similarly important is the intensive material properties which have often been overlooked, in particular, for soft tissues that are not to bear load assumingly. The mechanostructural properties determine not only the structural stability of biomaterials but also their physiological functionality by directing cellular activity and regulating cell fate decision. The aim here is to emphasize that cells could sense intensive material properties like elasticity and reside, proliferate, migrate and differentiate accordinglyno matter if the construct is from a natural source like cartilage, skin etc. or of synthetic one. Meanwhile, the very objective of this work is to provide a tunable scheme for manipulating the elasticity of collagen-based constructs to be used to demonstrate how to engineer cell behavior and regulate mechanotransduction. Articular cartilage was chosen as it represents one of the most complex hierarchical arrangements of collagen meshwork in both connective tissues and ECM-like biomaterials. Corona discharge treatment was used to produce constructs with varying density of crosslinked collagen and stiffness accordingly. The results demonstrated that elastic modulus increased up to 33% for samples treated up to one minute as crosslink density was found to increase with exposure time. According to the thermal analysis, longer exposure to corona increased crosslink density as the denaturation enthalpy increased. However the spectroscopy results suggested that despite the stabilization of the collagen structure the integrity of the triple helical structure remained intact. The in vitro superficial culture of heterologous chondrocytes also determined that the corona treatment can modulate migration with increased focal adhesion of cells due to enhanced stiffness, without cytotoxicity effects, and providing the basis for reinforcing three-dimensional collagen-based biomaterials in order to direct cell function and mediate mechanotransduction.