975 resultados para Wood Rot
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aqueous extracts from wood biotreated with the white-rot fungus Ceriporiopsis subvermispora were evaluated for their Fe3+- and Cu2+-reducing activities and their anti- or prooxidant properties in Fenton-like reactions to decolorize the recalcitrant dye Azure B. The decolorization of Azure B was strongly inhibited in the presence of 10% (v/v) wood extracts. Only 0.1% (v/v)-diluted extracts provided some enhancement of the Azure B decolorization. The iron-containing reactions decolorized more Azure B and consumed substantially more H2O2 than the reactions containing copper. This study demonstrates that water-soluble wood phenols exert anti- or prooxidant effects that depend on their concentration in the reactions and on the type of cation, Fe3+ or Cu2+, used to convert H2O2 to OH radicals. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.
Resumo:
Pinus taeda wood chips were treated with the biopulping fungus Ceriporiopsis subvermispora in calcium-or oxalic acid-amended cultures. The secretion of hydrolytic and oxidative enzymes was inhibited only in the cultures having the highest concentration of calcium (1400 mg kg(-1) wood). Calcium decreased the availability of free oxalic acid, inhibited fungal growth, and reduced lignin mineralization and transformations. Oxalic acid amendment in the cultures was found not to affect the lignin mineralization and transformations; however, it did inhibit the depolymerization reactions detectable in the residual lignin that was retained in the biotreated wood. C. subvermispora presented catabolic activity for oxalic acid in the cultures amended with 1660 mg acid kg(-1) wood, whereas oxalic acid was synthesized when it was amended at low amounts or initially absent in the cultures. These data suggest one ideal ratio of oxalic acid in C. subvermispora cultures and indicate that its exogenous addition does not necessarily accompany the further degradation of lignin. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.
Resumo:
Extracellular enzymes that white-rot fungi secrete during lignin decay have been proposed as promising agents for oxidizing pollutants. We investigated the abilities of the white-rot fungi Punctularia strigosozonata, Irpex lacteus, Trichaptum biforme, Phlebia radiata, Trametes versicolor, and Pleurotus ostreatus to degrade Number 6 fuel oil in wood sawdust cultures. Our goals are to advise bioremediation efforts at a brownfield redevelopment site on the Blackstone River in Grafton, Massachusetts and to contribute to the understanding of decay mechanisms in white-rot fungi. All species tested degraded a C10 alkane. When cultivated for 6 months, Irpex lacteus, T. biforme, P. radiata, T. versicolor and P. ostreatus also degraded a C14 alkane and the polycyclic aromatic hydrocarbon phenanthrene. Gene expression analyses of P. strigosozonata indicate differential gene expression in the presence of Number 6 oil and on pine and aspen sawdust.
Resumo:
This work is aimed at improving our current knowledge of the non-enzymatic inecl~anisins involved in brown-rot decay, as well as the exploration of potential applications of a brown-rot mimetic model system in paper recycling processes. The study was divided into two parts. The first part focussed on the chemical mechanisms involved in chelation and reduction of iron by a low molecular weight chelator (isolated from the brown-rot fungus Gloeophyllz~m tmbeum) and its model compound 2,3- dihydroxybenzoic acid (2,3-DHBA). Chelation as well as free radical generation mediated by this system were studied by ESR measurement. The results indicate that the effects of the chelator/iron ratio, the pH, and other reaction parameters on hydroxyl radical generation by a Fenton type system could be determined using ESR spin-trapping techniques. The results also support the hypothesis that superoxide radicals are involved in the chelator-mediated Fenton process. In the second part of the study, the effect of a chelator-mediated Fenton system for the improvement of deinking efficiency and the n~odification of fiber and paper properties was studied. For the deinking study, copy paper was laser printed with an identical standard pattern. Then repulping and flotation operations were performed to remove ink particles. Under properly controlled deinking conditions, the chelator mediated treatment (CMT) resulted in a reduction in dirt count over that of conventional deinking procedures with no significant loss of pulp strength. To study the effect of the chelator system treatment on the quality of pulp with different fines content, a fully bleached hardwood kraft pulp was beaten to different freeness levels and treated with the chelator-mediated free radical system. The result shows that virgin fiber and heavily beaten fiber respond differently to the free radical treatment. Unbeaten fibers become more flexible and easier to collapse after free radical treatment, while beaten fibers show a reduction in fines and small materials after mild free radical treatment.
Resumo:
The overall objective of this thesis was to gain further understanding of the non-enzymatic mechanisms involved in brown-rot wood decay, especially the role of pH, oxalic acid, and low molecular catecholate compounds on the dissolution and reduction of iron, and the formation of reactive oxygen species. Another focus of this study will be the potential application of a biomimetic free radical generating system inspired from fungi wood decay process, especially the non-enzymatic mechanism. The possible pathways of iron uptake and iron redox cycling in non-enzymatic brown-rot decay were investigated in this study. UV-Vis spectroscopy and HPLC were employed to study the kinetics and pathways of the interaction between iron and model catecholate compounds under different pH and chelator/iron molar ratio conditions. Iron chelation and reduction during early non-enzymatic wood decay processes have been studied in this thesis. The results indicate that the effects of the chelator/iron ratio, the pH, and other reaction parameters on the hydroxyl radical generation in a Fenton type system can be determined using ESR spin-trapping techniques. Data also support the hypothesis that superoxide radicals are involved in chelator-mediated Fenton processes. The mechanisms involved in free radical activation of Thermal Mechanical Pulp fibers were investigated. The activation of TMP fibers was evaluated by ESR measurement of free phenoxy radical generation on solid fibers. The results indicate that low molecular weight chelators can improve Fenton reactions, thus in turn stimulating the free radical activation of TMP fibers. A mediated Fenton system was evaluated for decolorization of several types of dyes. The result shows that the Fenton system mediated by a catecholate-type chelator effectively reduced the color of a diluted solution of synthetic dyes after 90 minutes of treatment at room temperature. The results show that compared to a neat Fenton process, the mediated Fenton decolorization process increased the production, and therefore the effective longevity, of hydroxyl radical species to increase the decolorization efficiency.
Resumo:
Nondestructive techniques are widely used to assess existing timber structures. The models proposed for these methods are usually performed in the laboratory using small clear wood specimens. But in real situations many anomalies, defects and biological damage are found in wood. In these cases the existing models only indicate that the values are outside normality without providing any other information. To solve this problem, a study of non-destructive probing methods for wood was performed, testing the behaviour of four different techniques (penetration resistance, pullout resistance, drill resistance and chip drill extraction) on wood samples with different biological damage, simulating an in-situ test. The wood samples were obtained from existing Spanish timber structures with biotic damage caused by borer insects, termites, brown rot and white rot. The study concludes that all of the methods offer more or less detailed information about the degree of deterioration of wood, but that the first two methods (penetration and pullout resistance) cannot distinguish between pathologies. On the other hand, drill resistance and chip drill extraction make it possible to differentiate pathologies and even to identify species or damage location. Finally, the techniques used were compared to characterize their advantages and disadvantages.
Resumo:
Fungi that cause brown rot of wood are essential biomass recyclers and also the principal agents of decay in wooden structures, but the extracellular mechanisms by which they degrade lignocellulose remain unknown. To test the hypothesis that brown-rot fungi use extracellular free radical oxidants as biodegradative tools, Gloeophyllum trabeum was examined for its ability to depolymerize an environmentally recalcitrant polyether, poly(ethylene oxide) (PEO), that cannot penetrate cell membranes. Analyses of degraded PEOs by gel permeation chromatography showed that the fungus cleaved PEO rapidly by an endo route. 13C NMR analyses of unlabeled and perdeuterated PEOs recovered from G. trabeum cultures showed that a major route for depolymerization was oxidative C—C bond cleavage, a reaction diagnostic for hydrogen abstraction from a PEO methylene group by a radical oxidant. Fenton reagent (Fe(II)/H2O2) oxidized PEO by the same route in vitro and therefore might account for PEO biodegradation if it is produced by the fungus, but the data do not rule out involvement of less reactive radicals. The reactivity and extrahyphal location of this PEO-degrading system suggest that its natural function is to participate in the brown rot of wood and that it may enable brown-rot fungi to degrade recalcitrant organopollutants.
Resumo:
Phototyped.
Resumo:
Literature cited: p. 75-79.
Resumo:
Soils are the largest sinks of carbon in terrestrial ecosystems. Soil organic carbon is important for ecosystem balance as it supplies plants with nutrients, maintains soil structure, and helps control the exchange of CO2 with the atmosphere. The processes in which wood carbon is stabilized and destabilized in forest soils is still not understood completely. This study attempts to measure early wood decomposition by different fungal communities (inoculation with pure colonies of brown or white rot, or the original microbial community) under various interacting treatments: wood quality (wood from +CO2, +CO2+O3, or ambient atmosphere Aspen-FACE treatments from Rhinelander, WI), temperature (ambient or warmed), soil texture (loamy or sandy textured soil), and wood location (plot surface or buried 15cm below surface). Control plots with no wood chips added were also monitored throughout the study. By using isotopically-labelled wood chips from the Aspen-FACE experiment, we are able to track wood-derived carbon losses as soil CO2 efflux and as leached dissolved organic carbon (DOC). We analyzed soil water for chemical characteristics such as, total phenolics, SUVA254, humification, and molecular size. Wood chip samples were also analyzed for their proportion of lignin:carbohydrates using FTIR analysis at three time intervals throughout 12 months of decomposition. After two years of measurements, the average total soil CO2 efflux rates were significantly different depending on wood location, temperature, and wood quality. The wood-derived portion soil CO2 efflux also varied significantly by wood location, temperature, and wood quality. The average total DOC and the wood-derived portion of DOC differed between inoculation treatments, wood location, and temperature. Soil water chemical characteristics varied significantly by inoculation treatments, temperature, and wood quality. After 12 months of decomposition the proportion of lignin:carbohydrates varied significantly by inoculation treatment, with white rot having the only average proportional decrease in lignin:carbohydrates. Both soil CO2 efflux and DOC losses indicate that wood location is important. Carbon losses were greater from surface wood chips compared with buried wood chips, implying the importance of buried wood for total ecosystem carbon stabilization. Treatments associated with climate change also had an effect on the level of decomposition. DOC losses, soil water characteristics, and FTIR data demonstrate the importance of fungal community on the degree of decomposition and the resulting byproducts found throughout the soil.
Resumo:
Due to its relationship with other properties, wood density is the main wood quality parameter. Modern, accurate methods - such as X-ray densitometry - are applied to determine the spatial distribution of density in wood sections and to evaluate wood quality. The objectives of this study were to determinate the influence of growing conditions on wood density variation and tree ring demarcation of gmelina trees from fast growing plantations in Costa Rica. The wood density was determined by X-ray densitometry method. Wood samples were cut from gmelina trees and were exposed to low X-rays. The radiographic films were developed and scanned using a 256 gray scale with 1000 dpi resolution and the wood density was determined by CRAD and CERD software. The results showed tree-ring boundaries were distinctly delimited in trees growing in site with rainfall lower than 25 10 mm/year. It was demonstrated that tree age, climatic conditions and management of plantation affects wood density and its variability. The specific effect of variables on wood density was quantified by for multiple regression method. It was determined that tree year explained 25.8% of the total variation of density and 19.9% were caused by climatic condition where the tree growing. Wood density was less affected by the intensity of forest management with 5.9% of total variation.
Resumo:
The tree Gmelina arborea has been widely introduced in Costa Rica for commercial purposes. This new conditions for melina cause variations on anatomy in secondary xylem of the trees growing in plantations. The objective of the present research was to determine the variation in the anatomy of xylem caused by the ecological conduction variation. Dimensions of fiber, axial parenchyma percentage of cross sections, parameters of vessels and the ray were measured. The results showed that some anatomical characteristics remained stable despite variations of ecological conditions, especially radial parenchyma and anatomical features which were less affected by the altitude. On the other hand, the vessels, axial parenchyma and fiber were less stable because they were affected significantly by the longitude, latitude, altitude and precipitation. Latitude significantly affected vessel percentage, length and diameter of the fiber and lumen. Longitude affected vessel percentage and fiber diameter. Altitude had a significant correlation with the amount of cells at my height. Annual average precipitation affected vessel percentage and diameter, not only of the fiber, but also of the lumen. These results suggest that the new growth conditions of G. arborea trees in Costa Rica have produced an anatomic adaptation.
Resumo:
The use of fertilization in forest stands results in yield gains, yet little attention has been directed to its potential effects on the quality of wood produced. Information is scarce about the effect of fertilization on anatomical structures of older Eucalyptus wood. This work aims to study the effect of fertilization on tissue cell size of wood from an Eucalyptus grandis stand at age 21 years, the management system of which is based on selective thinning and fertilizer application at the start of the thinning season. Factors to consider include: presence or absence of fertilizers, two log positions and five radial (pith to bark) positions. Results led to the conclusion that fertilization significantly influenced only vessel frequency. Vessel element length was influenced by tree height. Fiber length, fiber diameter, fiber wall thickness, vessel element length, vessel diameter and vessel frequency were influenced by the radial position of the sample in relation to the log. A positive correlation was observed between fiber length, fiber diameter, fiber wall thickness, vessel element length, vessel diameter, ray width and radial position, while a negative correlation was observed between ray frequency and radial position.
Resumo:
Introduction. This protocol aims at ( a) evaluating the resistance to post-harvest diseases within different genotypes of bananas, and ( b) comparing different origins of bananas ( geographic origin, physiological stage, etc.) for their susceptibility to post-harvest diseases. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. Materials required and details of the twelve steps of the protocol ( fruit sampling and inoculum preparation, wound anthracnose resistance study, quiescent anthracnose resistance study and crown-rot resistance study) are described. Results. Typical symptoms of the different diseases are obtained after artificial inoculation.