948 resultados para Wireless systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel compact tunable bandstop filter using Defected Microstrip Structure (DMS) is presented in this paper. The structure utilizes a modified T shaped DMS which helps in miniaturization of the filter. To verify the concept, one such filter was simulated, designed, fabricated and tested. Measurements on a fabricated tunable filter confirm the accuracy of the design procedure. The tuning range of 20% is achieved, ranging from 2.26 GHz to 2.747 GHz. Tuning is achieved by using NXP BB179 varactor diode. A nonlinear distortion evaluation in a tunable filter was experimentally verified. Experimental verification shows the filter is highly linear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A beamforming algorithm is introduced based on the general objective function that approximates the bit error rate for the wireless systems with binary phase shift keying and quadrature phase shift keying modulation schemes. The proposed minimum approximate bit error rate (ABER) beamforming approach does not rely on the Gaussian assumption of the channel noise. Therefore, this approach is also applicable when the channel noise is non-Gaussian. The simulation results show that the proposed minimum ABER solution improves the standard minimum mean squares error beamforming solution, in terms of a smaller achievable system's bit error rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, third generation networks are consolidated realities, and user expectations on new applications and services are becoming higher and higher. Therefore, new systems and technologies are necessary to move towards the market needs and the user requirements. This has driven the development of fourth generation networks. ”Wireless network for the fourth generation” is the expression used to describe the next step in wireless communications. There is no formal definition for what these fourth generation networks are; however, we can say that the next generation networks will be based on the coexistence of heterogeneous networks, on the integration with the existing radio access network (e.g. GPRS, UMTS, WIFI, ...) and, in particular, on new emerging architectures that are obtaining more and more relevance, as Wireless Ad Hoc and Sensor Networks (WASN). Thanks to their characteristics, fourth generation wireless systems will be able to offer custom-made solutions and applications personalized according to the user requirements; they will offer all types of services at an affordable cost, and solutions characterized by flexibility, scalability and reconfigurability. This PhD’s work has been focused on WASNs, autoconfiguring networks which are not based on a fixed infrastructure, but are characterized by being infrastructure less, where devices have to automatically generate the network in the initial phase, and maintain it through reconfiguration procedures (if nodes’ mobility, or energy drain, etc..., cause disconnections). The main part of the PhD activity has been focused on an analytical study on connectivity models for wireless ad hoc and sensor networks, nevertheless a small part of my work was experimental. Anyway, both the theoretical and experimental activities have had a common aim, related to the performance evaluation of WASNs. Concerning the theoretical analysis, the objective of the connectivity studies has been the evaluation of models for the interference estimation. This is due to the fact that interference is the most important performance degradation cause in WASNs. As a consequence, is very important to find an accurate model that allows its investigation, and I’ve tried to obtain a model the most realistic and general as possible, in particular for the evaluation of the interference coming from bounded interfering areas (i.e. a WiFi hot spot, a wireless covered research laboratory, ...). On the other hand, the experimental activity has led to Throughput and Packet Error Rare measurements on a real IEEE802.15.4 Wireless Sensor Network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Ph.D. dissertation reports on the work performed at the Wireless Communication Laboratory - University of Bologna and National Research Council - as well as, for six months, at the Fraunhofer Institute for Integrated Circuit (IIS) in Nürnberg. The work of this thesis is in the area of wireless communications, especially with regards to cooperative communications aspects in narrow-band and ultra-wideband systems, cooperative links characterization, network geometry, power allocation techniques,and synchronization between nodes. The underpinning of this work is devoted to developing a general framework for design and analysis of wireless cooperative communication systems, which depends on propagation environment, transmission technique, diversity method, power allocation for various scenarios and relay positions. The optimal power allocation for minimizing the bit error probability at the destination is derived. In addition, a syncronization algorithm for master-slave communications is proposed with the aim of jointly compensate the clock drift and offset of wireless nodes composing the network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present PhD thesis exploits the design skills I have been improving since my master thesis’ research. A brief description of the chapters’ content follows. Chapter 1: the simulation of a complete front–end is a very complex problem and, in particular, is the basis upon which the prediction of the overall performance of the system is possible. By means of a commercial EM simulation tool and a rigorous nonlinear/EM circuit co–simulation based on the Reciprocity Theorem, the above–mentioned prediction can be achieved and exploited for wireless links characterization. This will represent the theoretical basics of the entire present thesis and will be supported by two RF applications. Chapter 2: an extensive dissertation about Magneto–Dielectric (MD) materials will be presented, together with their peculiar characteristics as substrates for antenna miniaturization purposes. A designed and tested device for RF on–body applications will be described in detail. Finally, future research will be discussed. Chapter 3: this chapter will deal with the issue regarding the exploitation of renewable energy sources for low–energy consumption devices. Hence the problem related to the so–called energy harvesting will be tackled and a first attempt to deploy THz solar energy in an innovative way will be presented and discussed. Future research will be proposed as well. Chapter 4: graphene is a very promising material for devices to be exploited in the RF and THz frequency range for a wide range of engineering applications, including those ones marked as the main research goal of the present thesis. This chapter will present the results obtained during my research period at the National Institute for Research and Development in Microtechnologies (IMT) in Bucharest, Romania. It will concern the design and manufacturing of antennas and diodes made in graphene–based technology for detection/rectification purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il progetto di tesi riguarda principalmente la progettazione di moderni sistemi wireless, come 5G o WiGig, operanti a onde millimetriche, attraverso lo studio di una tecnica avanzata detta Beamforming, che, grazie all'utilizzo di antenne direttive e compatte, permette di superare limiti di link budget dovuti alle alte frequenze e introdurre inoltre diversità spaziale alla comunicazione. L'obiettivo principale del lavoro è stato quello di valutare, tramite simulazioni numeriche, le prestazioni di alcuni diversi schemi di Beamforming integrando come tool di supporto un programma di Ray Tracing capace di fornire le principali informazioni riguardo al canale radio. Con esso infatti è possibile sia effettuare un assessment generale del Beamforming stesso, ma anche formulare i presupposti per innovative soluzioni, chiamate RayTracing-assisted- Beamforming, decisamente promettenti per futuri sviluppi così come confermato dai risultati.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile Mesh Network based In-Transit Visibility (MMN-ITV) system facilitates global real-time tracking capability for the logistics system. In-transit containers form a multi-hop mesh network to forward the tracking information to the nearby sinks, which further deliver the information to the remote control center via satellite. The fundamental challenge to the MMN-ITV system is the energy constraint of the battery-operated containers. Coupled with the unique mobility pattern, cross-MMN behavior, and the large-spanned area, it is necessary to investigate the energy-efficient communication of the MMN-ITV system thoroughly. First of all, this dissertation models the energy-efficient routing under the unique pattern of the cross-MMN behavior. A new modeling approach, pseudo-dynamic modeling approach, is proposed to measure the energy-efficiency of the routing methods in the presence of the cross-MMN behavior. With this approach, it could be identified that the shortest-path routing and the load-balanced routing is energy-efficient in mobile networks and static networks respectively. For the MMN-ITV system with both mobile and static MMNs, an energy-efficient routing method, energy-threshold routing, is proposed to achieve the best tradeoff between them. Secondly, due to the cross-MMN behavior, neighbor discovery is executed frequently to help the new containers join the MMN, hence, consumes similar amount of energy as that of the data communication. By exploiting the unique pattern of the cross-MMN behavior, this dissertation proposes energy-efficient neighbor discovery wakeup schedules to save up to 60% of the energy for neighbor discovery. Vehicular Ad Hoc Networks (VANETs)-based inter-vehicle communications is by now growingly believed to enhance traffic safety and transportation management with low cost. The end-to-end delay is critical for the time-sensitive safety applications in VANETs, and can be a decisive performance metric for VANETs. This dissertation presents a complete analytical model to evaluate the end-to-end delay against the transmission range and the packet arrival rate. This model illustrates a significant end-to-end delay increase from non-saturated networks to saturated networks. It hence suggests that the distributed power control and admission control protocols for VANETs should aim at improving the real-time capacity (the maximum packet generation rate without causing saturation), instead of the delay itself. Based on the above model, it could be determined that adopting uniform transmission range for every vehicle may hinder the delay performance improvement, since it does not allow the coexistence of the short path length and the low interference. Clusters are proposed to configure non-uniform transmission range for the vehicles. Analysis and simulation confirm that such configuration can enhance the real-time capacity. In addition, it provides an improved trade off between the end-to-end delay and the network capacity. A distributed clustering protocol with minimum message overhead is proposed, which achieves low convergence time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to investigate two candidate waveforms for next generation wireless systems, filtered Orthogonal Frequency Division Multiplexing (f-OFDM) and Unified Filtered Multi-Carrier (UFMC). The evaluation is done based on the power spectral density analysis of the signal and performance measurements in synchronous and asynchronous transmission. In f-OFDM we implement a soft truncated filter with length 1/3 of OFDM symbol. In UFMC we use the Dolph-Chebyshev filter, limited to the length of zero padding (ZP). The simulation results demonstrates that both waveforms have a better spectral behaviour compared with conventional OFDM. However, the induced inter-symbol interference (ISI) caused by the filter in f-OFDM, and the inter-carrier interference (ICI) induced in UFMC due to cyclic prefix (CP) reduction , should be kept under control. In addition, in a synchronous transmission case with ideal parameters, f-OFDM and UFMC appear to have similar performance with OFDM. When carrier frequency offset (CFO) is imposed in the transmission, UFMC outperforms OFDM and f-OFDM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research has analysed both reciprocity and feedback mechanisms in multi-antenna wireless systems. It has presented the basis of an effective CSI feedback mechanism that efficiently provides the transmitter with the minimum information to allow the accurate knowledge of a rapidly changing channel. The simulations have been conducted using MATLAB to measure the improvement when the channel is estimated at the receiver in a 2 X 2 multi-antenna system and compared to the case of perfect channel knowledge at the receiver.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The enormous growth of wireless communication systems makes it important to evaluate the capacity of such channels. Multiple Input Multiple Output (MIMO) wireless communication systems are shown to yield significant performance improvement to data rates when compared to the traditional Single Input Single Output (SISO) wireless systems. The benefits of multiple antenna elements at the transmitter and receiver have become necessary to the research and the development of the next generation of mobile communication systems. In this paper we propose the use of Relaying MIMO wireless communication systems for use over long throughput. We investigate how Relays can be used in a "demodulate-and-forward" operation when the transmitter is equipped with spatially correlated multiple antenna elements and the receiver has only partial knowledge of the statistics of the channel. We show that Relays between the source and destination nodes of a wireless communication system in MIMO configuration improve the throughput of the system when compared to the typical MIMO systems, or achieve the desired channel capacity with significantly lower power resources needed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Networked control systems (NCS) are distributed control system where the sensors, actuators and controllers are physically separated and connected through communication networks. NCS represent the evolution of networked control architectures providing greater modularity and control decentralization, ease maintenance and diagnosis and lower cost of implementation. A recent trend in this research topic is the development of NCS using wireless networks (WNCS) enabling interoperability between existing wired and wireless systems. This paper evaluates a serial RS-232 ZigBee device as a wireless sensor link in NCS. In order to support this investigation, relevant performance metrics for wireless control applications such as jitter, time delay and messages lost are highlighted and calculated to evaluate the device capabilities. In addition the control performance of an implemented motor control system using the device is analyzed. Experimental results led to the conclusion that serial RS-232 ZigBee devices can be used to implement WNCS and the use of this device delay information in the PID controller discretization can improve the control performance of the system. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A recent trend in networked control systems (NCSs) is the use of wireless networks enabling interoperability between existing wired and wireless systems. One of the major challenges in these wireless NCSs (WNCSs) is to overcome the impact of the message loss that degrades the performance and stability of these systems. Moreover, this impact is greater when dealing with burst or successive message losses. This paper discusses and presents the experimental results of a compensation strategy to deal with this burst message loss problem in which a NCS mathematical model runs in parallel with the physical process, providing sensor virtual data in case of packet losses. Running in real-time inside the controller, the mathematical model is updated online with real control signals sent to the actuator, which provides better reliability for the estimated sensor feedback (virtual data) transmitted to the controller each time a message loss occurs. In order to verify the advantages of applying this model-based compensation strategy for burst message losses in WNCSs, the control performance of a motor control system using CAN and ZigBee networks is analyzed. Experimental results led to the conclusion that the developed compensation strategy provided robustness and could maintain the control performance of the WNCS against different message loss scenarios.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Networked control systems (NCSs) are distributed control system in which sensors, actuators and controllers are physically separated and connected through communication networks. NCS represent the evolution of networked control architectures providing greater modularity and control decentralization, ease maintenance and diagnosis and lower cost of implementation. A recent trend in this research topic is the development of NCS using wireless networks(WNCS)which enable interoperability between existing wiredand wireless systems. This paper presents the feasibility analysis of using serial to wireless converter as a wireless sensor link in NCS. In order to support this investigation, relevant performance metrics for wireless control applications such as jitter, time delay and messages lost are highlighted and calculated to evaluate the wireless converter capabilities. In addition the control performance of an implemented motor control system using the converter is analyzed. Experimental results led to the conclusion that serial ZigBee device isrecommended against the Bluetooth as it provided better metrics for control applications. However, bothdevices can be used to implement WNCS providing transmission rates and closed control loop times which are acceptable for NCS applications.Moreoverthe use of thewireless device delay in the PID controller discretization can improve the control performance of the system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis presents an analysis of the resource allocation problem in Orthogonal Frequency Division Multiplexing based multi-hop wireless communications systems. The study analyzed the tractable nature of the problem and designed several heuristic and fairness-aware resource allocation algorithms. These algorithms are fast and efficient and therefore can improve power management in wireless systems significantly.