937 resultados para Wind-induced Natural Ventilation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible cylindrical structures subjected to wind loading experience vibrations from periodic shedding of vortices in their wake. Vibrations become excessive when the natural frequencies of the cylinder coincide with the vortex shedding frequency. In this study, cylinder vibrations are transmitted to a beam inside the structure via dynamic magnifier system. This system amplifies the strain experienced by piezoelectric patches bonded to the beam to maximize the conversion from vibrational energy into electrical energy. Realworld applicability is tested using a wind tunnel to create vortex shedding and comparing the results to finite element modeling that shows the structural vibrational modes. A crucial part of this study is conditioning and storing the harvested energy, focusing on theoretical modeling, design parameter optimization, and experimental validation. The developed system is helpful in designing wind-induced energy harvesters to meet the necessity for novel energy resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermometer screen properties are poorly characterised at low wind speeds. Temperatures from a large thermometer screen have been compared with those from an automatically shaded open-air fine-wire resistance thermometer. For the majority of 5-minute average measurements obtained between July 2008 and 2009, the screen and fine-wire temperatures agreed closely, with a median difference <0.05◦C. At low wind speeds however, larger temperature differences occurred. When calm (wind speed at 2 metres, u2, ≤ 0.1 m s−1), the difference between screen and open-air temperatures varied from −0.25◦C to +0.87◦C. At night with u2 < 0.5 m s−1, this difference was −0.14◦C to 0.39◦C, and, rarely, up to −0.68◦C to 1.38◦C. At the minimum in the daily temperature cycle, the semi-urban site at Reading had u2 < 1 m s−1 for 52% of the observations 1997–2008, u2 < 0.5 m s−1 for 34% and calm conditions for 20%. Consequently uncertainties in the minimum temperature measurements may arise from poor ventilation, which can propagate through calculations to daily average temperatures. In comparison with the daily minimum temperature, the 0900 UTC synoptic temperature measurement has a much lower abundance (5%) of calm conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ameliorated strategies were put forward to improve the model predictive control in reducing the wind induced vibration of spatial latticed structures. The dynamic matrix control (DMC) predictive method was used and the reference trajectory which is called the decaying functions was suggested for the analysis of spatial latticed structure (SLS) under wind loads. The wind-induced vibration control model of SLS with improved DMC model predictive control was illustrated, then the different feedback strategies were investigated and a typical SLS was taken as example to investigate the reduction of wind-induced vibration. In addition, the robustness and reliability of DMC strategy were discussed by varying the model configurations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the consultative phase is to examine the role that natural ventilation has and can play in the subdivision planning process in SEQ. The Centre for Subtropical Design at QUT coordinated the consultative phase and has conducted a workshop, and interviews, with stakeholders including developers, land development consultants, land surveyors, urban designers and regulators, to identify current understanding of the impact of urban subdivision on natural ventilation, and the role of natural ventilation in achieving energy efficiency for dwellings. This report details the findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indoor air quality is a critical factor in the classroom due to high people concentration in a unique space. Indoor air pollutant might increase the chance of both long and short-term health problems among students and staff, reduce the productivity of teachers and degrade the student’s learning environment and comfort. Adequate air distribution strategies may reduce risk of infection in classroom. So, the purpose of air distribution systems in a classroom is not only to maximize conditions for thermal comfort, but also to remove indoor contaminants. Natural ventilation has the potential to play a significant role in achieving improvements in IAQ. The present study compares the risk of airborne infection between Natural Ventilation (opening windows and doors) and a Split-System Air Conditioner in a university classroom. The Wells-Riley model was used to predict the risk of indoor airborne transmission of infectious diseases such as influenza, measles and tuberculosis. For each case, the air exchange rate was measured using a CO2 tracer gas technique. It was found that opening windows and doors provided an air exchange rate of 2.3 air changes/hour (ACH), while with the Split System it was 0.6 ACH. The risk of airborne infection ranged between 4.24 to 30.86 % when using the Natural Ventilation and between 8.99 to 43.19% when using the Split System. The difference of airborne infection risk between the Split System and the Natural Ventilation ranged from 47 to 56%. Opening windows and doors maximize Natural Ventilation so that the risk of airborne contagion is much lower than with Split System.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buoyant jets in natural ventilation of a model room with water as the fluid medium have been studied. A constant heat flux has been maintained on the bottom surface of the room. The buoyancy causes flow to enter through the bottom opening and leave through the top opening. The shadowgraph technique is used for visualization. At the inlet, a negatively buoyant jet is observed, whereas a positively buoyant jet is observed at the outlet. The theoretical results for the centerline trajectories of these buoyant jets using both Gaussian and top-hat profiles are discussed considering the variation of the entrainment coefficient with the local Froude number and the variation of the spreading ratio of buoyancy to velocity profile with the distance from the source. The shape of the profiles is found to evolve from top-hat to Gaussian geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natural ventilation of a well-mixed, pre-heated room with a point source of heating, and openings at the base and roof is investigated. The transient draining associated with the room being warmer than the exterior combined with the convective ow produced by the point source of heat leads to a fascinating series of transient ow regimes as the system evolves to the two-layer steady-state regime described by Linden, Lane-Ser_ and Smeed [1]. As the room begins to ventilate, a turbulent plume rises from the point source of heat to the ceiling, and typically forms a deepening layer of hot air. However, with a weak heat source, then at some point the ascending plume will intrude beneath the layer of original uid. Otherwise, the ascending plume always reaches the top of the room as the system evolves to a steady state. We develop a simpli_ed model of the transient evolution and test this with some new laboratory experiments. We conclude with a discussion of the implications of our results for real buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the steady state natural ventilation of an enclosed space in which vent A, located at height hA above the floor, is connected to a vertical stack with a termination at height H, while the second vent, B, at height hB above the floor, connects directly to the exterior. We first examine the flow regimes which develop with a distributed source of heating at the base of the space. If hBhB>hA, then two different flow regimes may develop. Either (i) there is inflow through vent B and outflow through vent A, or (ii) the flow reverses, with inflow down the stack into vent A and outflow through vent B. With inflow through vent A, the internal temperature and ventilation rate depend on the relative height of the two vents, A and B, while with inflow through vent B, they depend on the height of vent B relative to the height of the termination of the stack H. With a point source of heating, a similar transition occurs, with a unique flow regime when vent B is lower than vent A, and two possible regimes with vent B higher than vent A. In general, with a point source of buoyancy, each steady state is characterised by a two-layer density stratification. Depending on the relative heights of the two vents, in the case of outflow through vent A connected to the stack, the interface between these layers may lie above, at the same level as or below vent A, leading to discharge of either pure upper layer, a mixture of upper and lower layer, or pure lower layer fluid. In the case of inflow through vent A connected to the stack, the interface always lies below the outflow vent B. Also, in this case, if the inflow vent A lies above the interface, then the lower layer becomes of intermediate density between the upper layer and the external fluid, whereas if the interface lies above the inflow vent A, then the lower layer is composed purely of external fluid. We develop expressions to predict the transitions between these flow regimes, in terms of the heights and areas of the two vents and the stack, and we successfully test these with new laboratory experiments. We conclude with a discussion of the implications of our results for real buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on an experimental and theoretical study of the transient flows which develop as a naturally ventilated room adjusts from one temperature to another. We focus on a room heated from below by a uniform heat source, with both high- and low-level ventilation openings. Depending on the initial temperature of the room relative to (i) the final equilibrium temperature and (ii) the exterior temperature, three different modes of ventilation may develop. First, if the room temperature lies between the exterior and the equilibrium temperature, the interior remains well-mixed and gradually heats up to the equilibrium temperature. Secondly, if the room is initially warmer than the equilibrium temperature, then a thermal stratification develops in which the upper layer of originally hot air is displaced upwards by a lower layer of relatively cool inflowing air. At the interface, some mixing occurs owing to the effects of penetrative convection. Thirdly, if the room is initially cooler than the exterior, then on opening the vents, the original air is displaced downwards and a layer of ambient air deepens from above. As this lower layer drains, it is eventually heated to the ambient temperature, and is then able to mix into the overlying layer of external air, and the room becomes well-mixed. For each case, we present new laboratory experiments and compare these with some new quantitative models of the transient flows. We conclude by considering the implications of our work for natural ventilation of large auditoria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application of laboratory analogue modelling of air flow in a naturally ventilated shopping mall is reviewed in this paper. A detailed study of the ventilation was undertaken to establish the principles and to explore how natural ventilation might interact with a localised mechanical ventilation system designed to enhance the cooling of a high density food court area. The case study is used to show how the combination of laboratory modelling and simplified mathematical modelling enables one to rapidly identify the various flow regimes which can occur, to quantify the resultant flows and mean temperatures and to thereby develop appropriate ventilation strategies for the different external conditions which occur through the year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

89 ripe female brooders of the catfish, Clarias anguillaris (Body wt. Range 150g-1, 200g) were induced to spawn by hormone (Ovaprim) induced natural spawning technique over a period of 10 weeks. Matching ripe males were used for pairing the females at the ratio of two males to a female. Six ranges of brood stock body weights were considered as follows; <200g; 200g-399g; 400g-599g; 600-799g; 800g-999g; > 1000g and the number of fry produced by each female brooder was scored/recorded against the corresponding body weight range. The number of fry per unit quantity of hormone and the cost of production a fry based on the current price of Ovaprim (hormon) were determined so as to ascertain most economic size range. The best and most economic size range was between 400g-599g body weight with about 20,000 fry per ml of hormone and N0.028 per fry, while the females above 1000g gave the poorest results of 9,519 fry per ml of hormone and N0.059 per fry. For optimum production of Clarias anguillaris fry and maximum return on investment female brooders of body weights ranging between 400g-599g are recommended for hormone induced natural breeding exercises

Relevância:

100.00% 100.00%

Publicador:

Resumo:

89 ripe female brooders of the catfish, Clarias anguillaris (Body wt. Range 150g-1, 200g) were induced to spawn by hormone (Ovaprim) induced natural spawning technique over a period of 10 weeks. Matching ripe males were used for pairing the females at the ratio of two males to a female. Six ranges of brood stock body weights were considered as follows; <200g; 200g-399g; 400g-599g; 600-799g; 800g-999g; > 1000g and the number of fry produced by each female brooder was scored/recorded against the corresponding body weight range. The number of fry per unit quantity of hormone and the cost of production a fry based on the current price of Ovaprim (hormon) were determined so as to ascertain most economic size range. The best and most economic size range was between 400g-599g body weight with about 20,000 fry per ml of hormone and N0.028 per fry, while the females above 1000g gave the poorest results of 9,519 fry per ml of hormone and N0.059 per fry. For optimum production of Clarias anguillaris fry and maximum return on investment female brooders of body weights ranging between 400g-599g are recommended for hormone induced natural breeding exercises

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α σ≈=-20°to-25°. On the water side, the angle is α σ≈=-40°to-45°. The ratio between the maximum and the minimum principal stresses is σ a/σ b=3to4 on the air side, and σ a/σ b=1.5to3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches. © 2012 Elsevier B.V.