982 resultados para Wide Prediction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The axial coefficients of thermal expansion (CTE) of various carbon nanotubes (CNTs), i.e., single-wall carbon nanotubes (SWCNTs), and some multi-wall carbon nanotubes (MWCNTs), were predicted using molecular dynamics (MDs) simulations. The effects of two parameters, i.e., temperature and the CNT diameter, on CTE were investigated extensively. For all SWCNTs and MWCNTs, the obtained results clearly revealed that within a wide low temperature range, their axial CTEs are negative. As the diameter of CNTs decreases, this temperature range for negative axial CTEs becomes narrow, and positive axial CTEs appear in high temperature range. It was found that the axial CTEs vary nonlinearly with the temperature, however, they decrease linearly as the CNT diameter increases. Moreover, within a wide temperature range, a set of empirical formulations was proposed for evaluating the axial CTEs of armchair and zigzag SWCNTs using the above two parameters. Finally, it was found that the absolute value of the negative axial CTE of any MWCNT is much smaller than those of its constituent SWCNTs, and the average value of the CTEs of its constituent SWCNTs. The present fundamental study is very important for understanding the thermal behaviors of CNTs in such as nanocomposite temperature sensors, or nanoelectronics devices using CNTs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inter-individual variation in facial shape is one of the most noticeable phenotypes in humans, and it is clearly under genetic regulation; however, almost nothing is known about the genetic basis of normal human facial morphology. We therefore conducted a genome-wide association study for facial shape phenotypes in multiple discovery and replication cohorts, considering almost ten thousand individuals of European descent from several countries. Phenotyping of facial shape features was based on landmark data obtained from three-dimensional head magnetic resonance images (MRIs) and two-dimensional portrait images. We identified five independent genetic loci associated with different facial phenotypes, suggesting the involvement of five candidate genes-PRDM16, PAX3, TP63, C5orf50, and COL17A1-in the determination of the human face. Three of them have been implicated previously in vertebrate craniofacial development and disease, and the remaining two genes potentially represent novel players in the molecular networks governing facial development. Our finding at PAX3 influencing the position of the nasion replicates a recent GWAS of facial features. In addition to the reported GWA findings, we established links between common DNA variants previously associated with NSCL/P at 2p21, 8q24, 13q31, and 17q22 and normal facial-shape variations based on a candidate gene approach. Overall our study implies that DNA variants in genes essential for craniofacial development contribute with relatively small effect size to the spectrum of normal variation in human facial morphology. This observation has important consequences for future studies aiming to identify more genes involved in the human facial morphology, as well as for potential applications of DNA prediction of facial shape such as in future forensic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We conducted a genome-wide association meta-analysis of 4,604 endometriosis cases and 9,393 controls of Japanese and European ancestry. We show that rs12700667 on chromosome 7p15.2, previously found to associate with disease in Europeans, replicates in Japanese (P = 3.6 x 10(-3)), and we confirm association of rs7521902 at 1p36.12 near WNT4. In addition, we establish an association of rs13394619 in GREB1 at 2p25.1 with endometriosis and identify a newly associated locus at 12q22 near VEZT (rs10859871). Excluding cases of European ancestry of minimal or unknown severity, we identified additional previously unknown loci at 2p14 (rs4141819), 6p22.3 (rs7739264) and 9p21.3 (rs1537377). All seven SNP effects were replicated in an independent cohort and associated at P <5 x 10(-8) in a combined analysis. Finally, we found a significant overlap in polygenic risk for endometriosis between the genome-wide association cohorts of European and Japanese descent (P = 8.8 x 10(-11)), indicating that many weakly associated SNPs represent true endometriosis risk loci and that risk prediction and future targeted disease therapy may be transferred across these populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple equation to predict the breakdown voltages for binary mixtures (Vmix) of electronegative gases (SF6, CCl2F2) and buffer gases (N2, N2O, CO2, air) under uniform electric field has been proposed. Values of Vmix evaluated using this equation for mixtures of SF6-N2, SF6-air, SF6-N2O, SF6-CO2 and CCl2F2-N2 over a wide range of pd show an excellent agreement with the experimentally measured data available in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Correlations between Educational Attainment (EA) and measures of cognitive performance are as high as 0.8. This makes EA an attractive alternative phenotype for studies wishing to map genes affecting cognition due to the ease of collecting EA data compared to other cognitive phenotypes such as IQ. METHODOLOGY In an Australian family sample of 9538 individuals we performed a genome-wide association scan (GWAS) using the imputed genotypes of approximately 2.4 million single nucleotide polymorphisms (SNP) for a 6-point scale measure of EA. Top hits were checked for replication in an independent sample of 968 individuals. A gene-based test of association was then applied to the GWAS results. Additionally we performed prediction analyses using the GWAS results from our discovery sample to assess the percentage of EA and full scale IQ variance explained by the predicted scores. RESULTS The best SNP fell short of having a genome-wide significant p-value (p = 9.77x10(-7)). In our independent replication sample six SNPs among the top 50 hits pruned for linkage disequilibrium (r(2)<0.8) had a p-value<0.05 but only one of these SNPs survived correction for multiple testing--rs7106258 (p = 9.7*10(-4)) located in an intergenic region of chromosome 11q14.1. The gene based test results were non-significant and our prediction analyses show that the predicted scores explained little variance in EA in our replication sample. CONCLUSION While we have identified a polymorphism chromosome 11q14.1 associated with EA, further replication is warranted. Overall, the absence of genome-wide significant p-values in our large discovery sample confirmed the high polygenic architecture of EA. Only the assembly of large samples or meta-analytic efforts will be able to assess the implication of common DNA polymorphisms in the etiology of EA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Given moderately strong genetic contributions to variation in alcoholism and heaviness of drinking (50% to 60% heritability) with high correlation of genetic influences, we have conducted a quantitative trait genome-wide association study (GWAS) for phenotypes related to alcohol use and dependence. METHODS Diagnostic interview and blood/buccal samples were obtained from sibships ascertained through the Australian Twin Registry. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed with 8754 individuals (2062 alcohol-dependent cases) selected for informativeness for alcohol use disorder and associated quantitative traits. Family-based association tests were performed for alcohol dependence, dependence factor score, and heaviness of drinking factor score, with confirmatory case-population control comparisons using an unassessed population control series of 3393 Australians with genome-wide SNP data. RESULTS No findings reached genome-wide significance (p = 8.4 x 10(-8) for this study), with lowest p value for primary phenotypes of 1.2 x 10(-7). Convergent findings for quantitative consumption and diagnostic and quantitative dependence measures suggest possible roles for a transmembrane protein gene (TMEM108) and for ANKS1A. The major finding, however, was small effect sizes estimated for individual SNPs, suggesting that hundreds of genetic variants make modest contributions (1/4% of variance or less) to alcohol dependence risk. CONCLUSIONS We conclude that: - 1) meta-analyses of consumption data may contribute usefully to gene discovery; - 2) translation of human alcoholism GWAS results to drug discovery or clinically useful prediction of risk will be challenging, and; - 3) through accumulation across studies, GWAS data may become valuable for improved genetic risk differentiation in research in biological psychiatry (e.g., prospective high-risk or resilience studies).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of erroneous genotypes having passed standard quality control (QC) can be severe in genome-wide association studies, genotype imputation, and estimation of heritability and prediction of genetic risk based on single nucleotide polymorphisms (SNP). To detect such genotyping errors, a simple two-locus QC method, based on the difference in test statistic of association between single SNPs and pairs of SNPs, was developed and applied. The proposed approach could detect many problematic SNPs with statistical significance even when standard single SNP QC analyses fail to detect them in real data. Depending on the data set used, the number of erroneous SNPs that were not filtered out by standard single SNP QC but detected by the proposed approach varied from a few hundred to thousands. Using simulated data, it was shown that the proposed method was powerful and performed better than other tested existing methods. The power of the proposed approach to detect erroneous genotypes was approximately 80% for a 3% error rate per SNP. This novel QC approach is easy to implement and computationally efficient, and can lead to a better quality of genotypes for subsequent genotype-phenotype investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Polygenic risk scores comprising established susceptibility variants have shown to be informative classifiers for several complex diseases including prostate cancer. For prostate cancer it is unknown if inclusion of genetic markers that have so far not been associated with prostate cancer risk at a genome-wide significant level will improve disease prediction. METHODS We built polygenic risk scores in a large training set comprising over 25,000 individuals. Initially 65 established prostate cancer susceptibility variants were selected. After LD pruning additional variants were prioritized based on their association with prostate cancer. Six-fold cross validation was performed to assess genetic risk scores and optimize the number of additional variants to be included. The final model was evaluated in an independent study population including 1,370 cases and 1,239 controls. RESULTS The polygenic risk score with 65 established susceptibility variants provided an area under the curve (AUC) of 0.67. Adding an additional 68 novel variants significantly increased the AUC to 0.68 (P = 0.0012) and the net reclassification index with 0.21 (P = 8.5E-08). All novel variants were located in genomic regions established as associated with prostate cancer risk. CONCLUSIONS Inclusion of additional genetic variants from established prostate cancer susceptibility regions improves disease prediction. Prostate 75:1467–1474, 2015. © 2015 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, a new flame extinction model based on the k/epsilon turbulence time scale concept is proposed to predict the flame liftoff heights over a wide range of coflow temperature and O-2 mass fraction of the coflow. The flame is assumed to be quenched, when the fluid time scale is less than the chemical time scale ( Da < 1). The chemical time scale is derived as a function of temperature, oxidizer mass fraction, fuel dilution, velocity of the jet and fuel type. The present extinction model has been tested for a variety of conditions: ( a) ambient coflow conditions ( 1 atm and 300 K) for propane, methane and hydrogen jet flames, ( b) highly preheated coflow, and ( c) high temperature and low oxidizer concentration coflow. Predicted flame liftoff heights of jet diffusion and partially premixed flames are in excellent agreement with the experimental data for all the simulated conditions and fuels. It is observed that flame stabilization occurs at a point near the stoichiometric mixture fraction surface, where the local flow velocity is equal to the local flame propagation speed. The present method is used to determine the chemical time scale for the conditions existing in the mild/ flameless combustion burners investigated by the authors earlier. This model has successfully predicted the initial premixing of the fuel with combustion products before the combustion reaction initiates. It has been inferred from these numerical simulations that fuel injection is followed by intense premixing with hot combustion products in the primary zone and combustion reaction follows further downstream. Reaction rate contours suggest that reaction takes place over a large volume and the magnitude of the combustion reaction is lower compared to the conventional combustion mode. The appearance of attached flames in the mild combustion burners at low thermal inputs is also predicted, which is due to lower average jet velocity and larger residence times in the near injection zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The applicability of Artificial Neural Networks for predicting the stress-strain response of jointed rocks at varied confining pressures, strength properties and joint properties (frequency, orientation and strength of joints) has been studied in the present paper. The database is formed from the triaxial compression tests on different jointed rocks with different confining pressures and different joint properties reported by various researchers. This input data covers a wide range of rock strengths, varying from very soft to very hard. The network was trained using a 3 layered network with feed forward back propagation algorithm. About 85% of the data was used for training and remaining15% for testing the predicting capabilities of the network. Results from the analyses were very encouraging and demonstrated that the neural network approach is efficient in capturing the complex stress-strain behaviour of jointed rocks. A single neural network is demonstrated to be capable of predicting the stress-strain response of different rocks, whose intact strength vary from 11.32 MPa to 123 MPa and spacing of joints vary from 10 cm to 100 cm for confining pressures ranging from 0 to 13.8 MPa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Entropy is a fundamental thermodynamic property that has attracted a wide attention across domains, including chemistry. Inference of entropy of chemical compounds using various approaches has been a widely studied topic. However, many aspects of entropy in chemical compounds remain unexplained. In the present work, we propose two new information-theoretical molecular descriptors for the prediction of gas phase thermal entropy of organic compounds. The descriptors reflect the bulk and size of the compounds as well as the gross topological symmetry in their structures, all of which are believed to determine entropy. A high correlation () between the entropy values and our information-theoretical indices have been found and the predicted entropy values, obtained from the corresponding statistically significant regression model, have been found to be within acceptable approximation. We provide additional mathematical result in the form of a theorem and proof that might further help in assessing changes in gas phase thermal entropy values with the changes in molecular structures. The proposed information-theoretical molecular descriptors, regression model and the mathematical result are expected to augment predictions of gas phase thermal entropy for a large number of chemical compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis (TB) is a life threatening disease caused due to infection from Mycobacterium tuberculosis (Mtb). That most of the TB strains have become resistant to various existing drugs, development of effective novel drug candidates to combat this disease is a need of the day. In spite of intensive research world-wide, the success rate of discovering a new anti-TB drug is very poor. Therefore, novel drug discovery methods have to be tried. We have used a rule based computational method that utilizes a vertex index, named `distance exponent index (D-x)' (taken x = -4 here) for predicting anti-TB activity of a series of acid alkyl ester derivatives. The method is meant to identify activity related substructures from a series a compounds and predict activity of a compound on that basis. The high degree of successful prediction in the present study suggests that the said method may be useful in discovering effective anti-TB compound. It is also apparent that substructural approaches may be leveraged for wide purposes in computer-aided drug design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical simulation of separated flows in rocket nozzles is challenging because existing turbulence models are unable to predict it correctly. This paper addresses this issue with the Spalart-Allmaras and Shear Stress Transport (SST) eddy-viscosity models, which predict flow separation with moderate success. Their performances have been compared against experimental data for a conical and two contoured subscale nozzles. It is found that they fail to predict the separation location correctly, exhibiting sensitivity to the nozzle pressure ratio (NPR) and nozzle type. A careful assessment indicated how the model had to be tuned for better, consistent prediction. It is learnt that SST model's failure is caused by limiting of the shear stress inside boundary layer according to Bradshaw's assumption, and by over prediction of jet spreading rate. Accordingly, SST's coefficients were empirically modified to match the experimental wall pressure data. Results confirm that accurate RANS prediction of separation depends on the correct capture of the jet spreading rate, and that it is feasible over a wide range of NPRs by modified values of the diffusion coefficients in the turbulence model. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a conceptually novel structured prediction model, GPstruct, which is kernelized, non-parametric and Bayesian, by design. We motivate the model with respect to existing approaches, among others, conditional random fields (CRFs), maximum margin Markov networks (M3N), and structured support vector machines (SVMstruct), which embody only a subset of its properties. We present an inference procedure based on Markov Chain Monte Carlo. The framework can be instantiated for a wide range of structured objects such as linear chains, trees, grids, and other general graphs. As a proof of concept, the model is benchmarked on several natural language processing tasks and a video gesture segmentation task involving a linear chain structure. We show prediction accuracies for GPstruct which are comparable to or exceeding those of CRFs and SVMstruct.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study develops a single-stream jet noise prediction model for a family of chevron nozzles. An original equation is proposed for the fourth-order space-time cross-correlations. They are expressed in flow parameters such as streamwise circulation and turbulent kinetic energy. The cross-correlations based on a Reynolds Averaged Navier-Stokes (RANS) flowfield showed a good agreement with those based on a Large Eddy Simulation (LES) flowfield. This proves that the proposed equation describes the cross-correlations accurately. With this novel source description, there is an excellent agreement between our model's far-field noise predictions and measurements1 for a wide range of frequencies and radiation angles. Our model captures the spectral shape, amplitude and peak frequency very well. This establishes that our model holds good for a family of chevron nozzles. As our model provides quick and accurate predictions, a parametric study was performed to understand the effects of a chevron nozzle geometry on jet noise and thrust loss. Chevron penetration is the underpinning factor for jet noise reduction. The reduction of jet noise per unit thrust loss decreases linearly with chevron penetration. The number of chevrons also has a considerable effect on jet noise.