961 resultados para Whey protein isolate
Resumo:
It is important to understand how changes in the product formulation can modify its characteristics. Thus, the objective of this study was to investigate the effect of whey protein concentrate (WPC) on the texture of fat-free dairy desserts. The correlation between instrumental and sensory measurements was also investigated. Four formulations were prepared with different WPC concentrations (0, 1.5, 3.0, and 4.5 wt. (%)) and were evaluated using the texture profile analysis (TPA) and rheology. Thickness was evaluated by nine trained panelists. Formulations containing WPC showed higher firmness, elasticity, chewiness, and gumminess and clearly differed from the control as indicated by principal component analysis (PCA). Flow behavior was characterized as time-dependent and pseudoplastic. Formulation with 4.5% WPC at 10 °C showed the highest thixotropic behavior. Experimental data were fitted to Herschel-Bulkley model. The addition of WPC contributed to the texture of the fat-free dairy dessert. The yield stress, apparent viscosity, and perceived thickness in the dairy desserts increased with WPC concentration. The presence of WPC promotes the formation of a stronger gel structure as a result of protein-protein interactions. The correlation between instrumental parameters and thickness provided practical results for food industries.
Resumo:
The effect of protein lupine isolate (LI) and addition of brea gum (BG) on a basic bread formulation is described. The major objective of this research was to evaluate the influence of the addition of LI on the quality and quantity of the proteins of fresh bread with BG. Protein quality was determinate by the Chemical Score method corrected for protein digestibility (CSCD%). The bread dough characteristics were determined by farinograph and alveograph. Fresh bread characterization was performed by measuring the physical parameters and evaluating the crumb structure. The effect of LI and BG on available lysine, the loss of available lysine ratio, and the chemical composition of the breads were also determined. The addition of LI on the bread formulation improved the protein content and the CSCD% of lysine. The dough with LI was less resistant to prolonged kneading and less manageable. With BG addition, the dough became stickier. The quality of fresh bread was affected by the addition of LI: the fresh bread had lower specific volume and more heterogeneous crumbs than that of the control group. The addition of BG did not influence the quality of the bread made with the mixed flour, but it had a positive effect on the loss of available lysine.
Resumo:
Significant initiatives exist within the global food market to search for new, alternative protein sources with better technological, functional, and nutritional properties. Lima bean (Phaseolus lunatus L.) protein isolate was hydrolyzed using a sequential pepsin-pancreatin enzymatic system. Hydrolysis was performed to produce limited (LH) and extensive hydrolysate (EH), each with different degrees of hydrolysis (DH). The effects of hydrolysis were evaluated in vitro in both hydrolysates based on structural, functional and bioactive properties. Structural properties analyzed by electrophoretic profile indicated that LH showed residual structures very similar to protein isolate (PI), although composed of mixtures of polypeptides that increased hydrophobic surface and denaturation temperature. Functionality of LH was associated with amino acid composition and hydrophobic/hydrophilic balance, which increased solubility at values close to the isoelectric point. Foaming and emulsifying activity index values were also higher than those of PI. EH showed a structure composed of mixtures of polypeptides and peptides of low molecular weight, whose intrinsic hydrophobicity and amino acid profile values were associated with antioxidant capacity, as well as inhibiting angiotensin-converting enzyme. The results obtained indicated the potential of Phaseolus lunatus hydrolysates to be incorporated into foods to improve techno-functional properties and impart bioactive properties.
Resumo:
The aim of the present study was to find out the best growing conditions for exopolysaccharide (EPS) producing bifidobacteria, which improve their functionality in yoghurt-like products. Two Bifidobacterium strains were used in this study, Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205. In the first part of the study the effect of casein hydrolysate, lactalbumin hydrolysate, whey protein concentrate and whey protein isolate, added at 1.5% w/v in skim milk, was evaluated in terms of cell growth and EPS production; skim milk supplemented with yeast extract served as the control. Among the various nitrogen sources, casein hydrolysate (CH) showed the highest cell growth and EPS production for both strains after 18 h incubation and therefore it was selected for subsequent work. Based on fermentation experiments using different levels of CH (from 0.5 to 2.5% w/v) it was deduced that 1.5% (w/v) CH resulted in the highest EPS production, yielding 102 and 285 mg L− 1 for B. infantis NCIMB 702205 and B. longum subsp. infantis CCUG 52486, respectively. The influence of temperature on growth and EPS production of both strains was further evaluated at 25, 30, 37 and 42 °C for up to 48 h in milk supplemented with 1.5% (w/v) CH. The temperature had a significant effect on growth, acidification and EPS production. The maximum growth and EPS production were recorded at 37 °C for both strains, whereas no EPS production was observed at 25 °C. Lower EPS production for both strains were observed at 42 °C, which is the common temperature used in yoghurt manufacturing compared to that at 37 °C. The results showed that the culture conditions have a clear effect on the growth, acidification and EPS production, and more specifically, that skim milk supplemented with 1.5% (w/v) CH could be used as a substrate for the growth of EPS-producing bifidobacteria, at 37 °C for 24 h, resulting in the production of a low fat yoghurt-like product with improved functionality.
Resumo:
Whey proteins are becoming an increasingly popular functional food ingredient. There are, however, sensory properties associated with whey protein beverages that may hinder the consumption of quantities sufficient to gain the desired nutritional benefits. One such property is mouth drying. The influence of protein structure on the mouthfeel properties of milk proteins has been previously reported. This paper investigates the effect of thermal denaturation of whey proteins on physicochemical properties (viscosity, particle size, zeta-potential, pH), and relates this to the observed sensory properties measured by qualitative descriptive analysis and sequential profiling. Mouthcoating, drying and chalky attributes built up over repeated consumption, with higher intensities for samples subjected to longer heating times (p < 0.05). Viscosity, pH, and zeta-potential were found to be similar for all samples, however particle size increased with longer heating times. As the pH of all samples was close to neutral, this implies that neither the precipitation of whey proteins at low pH, nor their acidity, as reported in previous literature, can be the drying mechanisms in this case. The increase in mouth drying with increased heating time suggests that protein denaturation is a contributing factor and a possible mucoadhesive mechanism is discussed.
Resumo:
Hypercholesterolemic hamsters were fed for 4 wk on diets rich in saturated fatty acids and cholesterol, differing only in protein source (20%): casein (control group, HC), whole cowpea seed (HWS), and cowpea protein isolate (HPI). Hamsters fed on HWS and HPI presented significant reductions in plasma total cholesterol and non-HDL cholesterol. HPI and HC presented similar protein digestibility, which were significantly higher than that of HWS. Animals fed on HWS presented significantly higher levels of bile acids and cholesterol in feces than did the animals fed on casein or HPI diets. Histological analyses of the liver showed that HC diet resulted in steatosis widely distributed throughout the hepatic lobule, while HWS and HPI diets promoted reductions in liver steatosis. The effectiveness of HWS for modulating lipid metabolism was greater than that of HPI, as measured by plasma cholesterol reduction and liver steatosis.
Resumo:
P>The aim of this research was to study spray drying as potential action to protect chlorophyllide from environmental conditions for shelf-life extension and characterisation of the powders. Six formulations were prepared with 7.5 and 10 g of carrier agents [gum Arabic (GA), maltodextrin (MA) and soybean protein isolate (SPI)]/100 mL of chlorophyllide solutions. The powders were evaluated for morphological characteristics (SEM), particle size, water activity, moisture, density, hygroscopicity, cold water solubility, sorption isotherms, colour and stability, during 90 days. All the powders were highly soluble, with solubility values around 97%. A significant lower hygroscopicity was observed for GA powders, whilst the lower X(m) values obtained by GAB equation fitting of the sorption isotherms was observed for the 7.5 g MA/100 mL samples. All formulations, but the 1 (7.5 g SPI/100 mL of chlorophyllide), provided excellent stability to the chlorophyllide during 90 days of storage even at room temperature.
Resumo:
The objective of this study was to select the optimal operational conditions for the production of instant soy protein isolate (SPI) by pulsed fluid bed agglomeration. The spray-dried SPI was characterized as being a cohesive powder, presenting cracks and channeling formation during its fluidization (Geldart type A). The process was carried out in a pulsed fluid bed, and aqueous maltodextrin solution was used as liquid binder. Air pulsation, at a frequency of 600 rpm, was used to fluidize the cohesive SPI particles and to allow agglomeration to occur. Seventeen tests were performed according to a central composite design. Independent variables were (i) feed flow rate (0.5-3.5 g/min), (ii) atomizing air pressure (0.5-1.5 bar) and (iii) binder concentration (10-50%). Mean particle diameter, process yield and product moisture were analyzed as responses. Surface response analysis led to the selection of optimal operational parameters, following which larger granules with low moisture content and high process yield were produced. Product transformations were also evaluated by the analysis of size distribution, flowability, cohesiveness and wettability. When compared to raw material, agglomerated particles were more porous and had a more irregular shape, presenting a wetting time decrease, free-flow improvement and cohesiveness reduction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to encapsulate casein hydrolysate by spray drying with soybean protein isolate (SPI) as wall material to attenuate the bitter taste of that product. Two treatments were prepared: both with 12 g/100 g solids and containing either two proportions of SPI: hydrolysate (70:30 and 80:20), called M1 and M2, respectively. The samples were evaluated for morphological characteristics (SEM), particle size, hygroscopicity, solubility, hydrophobicity, thermal behavior and bitter taste with a trained sensory panel using a paired-comparison test (non-encapsulated samples vs. encapsulated samples). Microcapsules had a continuous wall, many concavities, and no porosity. Treatments M1 and M2 presented average particle sizes of 11.32 and 9.18 mu m, respectively. The wall material and/or the microencapsulation raised the hygroscopicity of the hydrolysate since the free hydrolysate had hygroscopicity of 53 g of water/100 g of solids and M1 and M2 had 106.99 and 102.19 g of water/100 g of solids, respectively. However, the hydrophobicity decreases, the absence of a peak in encapsulated hydrolysates, and the results of the panel sensory test considering the encapsulated samples less bitter (p < 0.05) than the non-encapsulated, showed that spray drying with SPI was an efficient method for microencapsulation and attenuation of the bitter taste of the casein hydrolysate. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Milk supplementation with milk proteins in four different levels was used to investigate the effect on acidification and textural properties of yogurt. Commercial skim milk powder was diluted in distilled water, and the supplements were added to give different enriched-milk bases; these were heat treated at 90 degrees C for 5 min. These mixtures were incubated with the bacterial cultures for fermentation in a water bath, at 42 degrees C, until pH 4.50 was reached. Chemical changes during fermentation were followed by measuring the pH. Protein concentration measurements, microbial counts of Lactobacillus bulgaricus and Streptococcus thermophilus, and textural properties (G`, G ``, yield stress and firmness) were determined after 24 h of storage at 4 degrees C. Yogurt made with milk supplemented with sodium caseinate resulted in significant properties changes, which were decrease in fermentation time, and increase in yield stress, storage modulus, and firmness, with increases in supplement level. Microstructure also differed from that of yogurt produced with milk supplemented with skim milk powder or sodium caseinate. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The guava seed protein isolate ( PI) was obtained from the protein precipitation belonging to the class of the gluteline (Ip 4.5). The conditions for the preparation of the PI were determined by both the solubility curve and simultaneous thermogravimetry-differential thermal analysis (TG-DTA): pH 11.5, absence of NaCl and whiteners and T=( 25 +/- 3) degrees C. Under these conditions a yield of 77.0 +/- 0.4%, protein content of 94.2 +/- 0.3, ashes 0.50 +/- 0.05% and thermal stability, T= 200 degrees C, were obtained. The TG-DTA curves and the PI emulsification capacity study showed the presence of hydrophobic microdomains at pH 11.5 and 3.0 suggesting a random coil protein conformation and, to pH 10.0, an open protein conformation. The capacity of emulsification (CE), in the absence of NaCl, was verified for: 1 - pH 3.0 and 8.5, using the IP extracted at pH 10.0 and 11.5, CE >= 343 +/- 5 g of emulsified oil/g of protein; 2 - pH 6.60 just for the PI obtained at pH 11.5, CE >= 140 +/- 8 g of emulsified oil/g of protein.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)