998 resultados para Western pine beetle.
Resumo:
Unanswered key questions in bark beetle-plant interactions concern host finding in species attacking angiosperms in tropical zones and whether management strategies based on chemical signaling used for their conifer-attacking temperate relatives may also be applied in the tropics. We hypothesized that there should be a common link in chemical signaling mediating host location by these Scolytids. Using laboratory behavioral assays and chemical analysis we demonstrate that the yellow-orange exocarp stage of coffee berries, which attracts the coffee berry borer, releases relatively high amounts of volatiles including conophthorin, chalcogran, frontalin and sulcatone that are typically associated with Scolytinae chemical ecology. The green stage of the berry produces a much less complex bouquet containing small amounts of conophthorin but no other compounds known as bark beetle semiochemicals. In behavioral assays, the coffee berry borer was attracted to the spiroacetals conophthorin and chalcogran, but avoided the monoterpenes verbenone and a-pinene, demonstrating that, as in their conifer-attacking relatives in temperate zones, the use of host and non-host volatiles is also critical in host finding by tropical species. We speculate that microorganisms formed a common basis for the establishment of crucial chemical signals comprising inter-and intraspecific communication systems in both temperate-and tropical-occurring bark beetles attacking gymnosperms and angiosperms.
Resumo:
v.38:no.3(1950)
Resumo:
v.38:no.2(1950)
Resumo:
v.38:no.1(1949)
Resumo:
v.47:no.1(1957)
Resumo:
A total of over 200 different samples of bark and wood of Silver birch, Norway spruce and Scots pine were analysed. Samples were taken from several areas in western Finland, some with known sources of atmospheric heavy metal emission (Harjavalta, Ykspihlaja). Also analytical data for pine needles from some sites are reported. The chemical analyses were performed by thick-target particle-induced X-ray emission (PIXE) spectrometry after preconcentration by dry ashing of samples at 550oC. The following elements were quantified in most of the samples: P, S, K, Ca, Mn, Fe, Ni, Cu, Zn, Rb, Sr, Cd, Ba and Pb. The ash percentage and the chemical composition of ashes of different wood materials were also obtained, as dry ashing was used in the analytical procedure. The variations in elemental concentrations in wood and bark of an individual tree, expressed as RSDs, were mostly in the range 10 – 20 %. For several trees of the same species sampled from small areas (< 1 ha), the variations in elemental concentrations were surprisingly high (RSDs 20 – 50 %). In the vicinity of metal plants, effects of strong atmospheric heavy metal pollution (pollution factor above 100) were observed in pine bark. The increase of heavy metal content in wood samples from the same sites was quite small. Elemental concentrations in ashes of bark and wood, from areas with no local source of atmospheric pollution, were relatively uniform. Based on this observation an alternative way of demonstrating atmospheric pollution of tree bark is discussed.
Resumo:
Many species of bark and ambrosia beetles use host volatiles as cues for breeding site location. In a study where the objectives were to identify the different volatiles released by Pinus taeda L. billets as they age, to determine the arrival sequence of scolytids (Colcoptera: Scolytidae), and to correlate volatile emission by the billets with beetle catches, 25 species of scolytids were trapped. Bark beetles were more attracted to the billets in the beginning of the period. whereas ambrosia beetles arrived later. Among the bark beetles, Dendroctonus terebrans (Olivier) was significantly more attracted during the Ist 3 wk after tree felling, Hylastes tenuis Eichhoff in the Ist 2 wk. Pityophtorus pulicarius (Zimmermann) in weeks 2 and 3, and Ips grandicollis (Eichhoff) was more attracted on weeks 3 and 4. Among the ambrosia beetles, Xyleborinus saxeseni (Ratzeburg) was more attracted to billets during weeks 4-6, whereas Xyleborus pubescens Zimmermann and Xyleborus californicus Wood were more attracted during week 6. The billets showed marked decline in attractiveness to all scolytids after 8 wk. Volatiles collected during the beetle trapping periods included 15 hydrocarbon monoterpenes, 18 oxygenated monoterpenes, 4-allylanisole, and ethanol. The hydrocarbon monoterpenes and 4-allylanisole decreased sharply over time, but oxygenated monoterpenes and ethanol increased up to weeks 4-6, after which they also decreased. Good correlations between certain billet volatiles and catches for some beetle species were obtained, but their biological significance could not be determined.
Resumo:
The flight periodicity of western balsam bark beetle (Dryocoetes confusus Swaine) in Big Cottonwood Canyon, Utah, was studied during the summer months of 1992, 1993, and 1994. Contents of baited funnel traps were tallied by species up to 3 times weekly. Two main periods of flight activity were observed each year. The first and, generally, largest occurred in early summer soon after flight was initiated for the season. A 2nd period was observed in late summer, generally August. Timing of the 2 periods was influenced by unusually warm or cool weather in each study year. The 1st period had more males than females while the 2nd period had a majority of females. Except during periods of cool or wet weather, western balsam bark beetles were found to be active at least at minimal levels from June through September.
Resumo:
Aim Our aim was to discriminate different species of Pinus via pollen analysis in order to assess the responses of particular pine species to orbital and millennial-scale climate changes, particularly during the last glacial period. Location Modern pollen grains were collected from current pine populations along transects from the Pyrenees to southern Iberia and the Balearic Islands. Fossil pine pollen was recovered from the south-western Iberian margin core MD95-2042. Methods We measured a set of morphological traits of modern pollen from the Iberian pine species Pinus nigra, P. sylvestris, P. halepensis, P. pinea and P. pinaster and of fossil pine pollen from selected samples of the last glacial period and the early to mid-Holocene. Classification and regression tree (CART) analysis was used to establish a model from the modern dataset that discriminates pollen from the different pine species and allows identification of fossil pine pollen at the species level. Results The CART model was effective in separating pollen of P. nigra and P. sylvestris from that of the Mediterranean pine group (P. halepensis, P. pinea and P. pinaster). The pollen of Pinus nigra diverged from that of P. sylvestris by having a more flattened corpus. Predictions using this model suggested that fossil pine pollen is mainly from P. nigra in all the samples analysed. Pinus sylvestris was more abundant in samples from Greenland stadials than Heinrich stadials, whereas Mediterranean pines increased in samples from Greenland interstadials and during the early to mid-Holocene. Main conclusions Morphological parameters can be successfully used to increase the taxonomic resolution of fossil pine pollen at the species level for the highland pines (P. nigra and P. sylvestris) and at the group of species level for the Mediterranean pines. Our study indicates that P. nigra was the dominant component of the last glacial south-western/central Iberian pinewoods, although the species composition of these woodlands varied in response to abrupt climate changes.
Resumo:
Issued May 1977.
Resumo:
Includes bibliographical references (p. 58-60).
Resumo:
Dung beetle assemblages (Coleoptera, Scarabaeinae) in Atlantic forest fragments in southern Brazil. The beetles of the subfamily Scarabaeinae are important organisms that participate in the cycle of decomposition, especially in tropical ecosystems. Most species feed on feces (dung) or carcasses (carrion) and are associated with animals that produce their food resources. Dung beetles are divided into three functional groups: rollers, tunnelers and dwellers. This present work aims to study the diversity of dung beetle communities inhabiting fragments of the Atlantic Forest, with the purpose of describing the ecology of the species in southern Brazil. This study was conducted in the region of Campos Novos, in Santa Catarina, where twenty sites of Atlantic forest fragments were sampled. Samplings of dung beetles were conducted using 200 pitfall traps, of which 100 were baited with human feces and another 100 with carrion. Size and environmental complexity were also measured for each forest fragment. A total of 1,502 dung beetles, belonging to six tribes, 12 genera and 33 species, were collected. Results of the Levin's index of niche breadth indicated that 11 species were categorized as being coprophagous, ten as generalists, and two as necrophagous. Most species are tunnelers (19), nine of rollers and four of dwellers. The great diversity of Scarabaeinae in the region of Campos Novos, including several rare species, adds important data to the Scarabaeinae fauna in the central-western region of Santa Catarina. It may also help choosing priority areas for conservation in the region, where human impact, with large areas of monoculture, increasingly threatens the fragments of Mixed Ombrophilous Forest.
Resumo:
The genetic landscape of the European flora and fauna was shaped by the ebb and flow of populations with the shifting ice during Quaternary climate cycles. While this has been well demonstrated for lowland species, less is known about high altitude taxa. Here we analyze the phylogeography of the leaf beetle Oreina elongata from 20 populations across the Alps and Apennines. Three mitochondrial and one nuclear region were sequenced in 64 individuals. Within an mtDNA phylogeny, three of seven subspecies are monophyletic. The species is chemically defended and aposematic, with green and blue forms showing geographic variation and unexpected within-population polymorphism. These warning colors show pronounced east-west geographical structure in distribution, but the phylogeography suggests repeated origin and loss. Basal clades come from the central Alps. Ancestors of other clades probably survived across northern Italy and the northern Adriatic, before separation of eastern, southern and western populations and rapid spread through the western Alps. After reviewing calibrated gene-specific substitution rates in the literature, we use partitioned Bayesian coalescent analysis to date our phylogeography. The major clades diverged long before the last glacial maximum, suggesting that O. elongata persisted many glacial cycles within or at the edges of the Alps and Apennines. When analyzing additional barcoding pairwise distances, we find strong evidence to consider O. elongata as a species complex rather than a single species.
Resumo:
We performed a spatiotemporal analysis of a network of 21 Scots pine (Pinus sylvestris) ring-width chronologies in northern Fennoscandia by means of chronology statistics and multivariate analyses. Chronologies are located on both sides (western and eastern) of the Scandes Mountains (67°N-70°N, 15°E-29°E). Growth relationships with temperature, precipitation, and North Atlantic Oscillation (NAO) indices were calculated for the period 1880-1991. We also assessed their temporal stability. Current July temperature and, to a lesser degree, May precipitation are the main growth limiting factors in the whole area of study. However, Principal Component Analysis (PCA) and mean interseries correlation revealed differences in radial growth between both sides of the Scandes Mountains, attributed to the Oceanic-Continental climatic gradient in the area. The gradient signal is temporally variable and has strengthened during the second half of the 20th century. Northern Fennoscandia Scots pine growth is positively related to early winter NAO indices previous to the growth season and to late spring NAO. NAO/growth relationships are unstable and have dropped in the second half of the 20th century. Moreover, they are noncontinuous through the range of NAO values: for early winter, only positive NAO indices enhance tree growth in the next growing season, while negative NAO does not. For spring, only negative NAO is correlated with radial growth.
Resumo:
Aim To disentangle the effects of environmental and geographical processes driving phylogenetic distances among clades of maritime pine (Pinus pinaster). To assess the implications for conservation management of combining molecular information with species distribution models (SDMs; which predict species distribution based on known occurrence records and on environmental variables). Location Western Mediterranean Basin and European Atlantic coast. Methods We undertook two cluster analyses for eight genetically defined pine clades based on climatic niche and genetic similarities. We assessed niche similarity by means of a principal component analysis and Schoener's D metric. To calculate genetic similarity, we used the unweighted pair group method with arithmetic mean based on Nei's distance using 266 single nucleotide polymorphisms. We then assessed the contribution of environmental and geographical distances to phylogenetic distance by means of Mantel regression with variance partitioning. Finally, we compared the projection obtained from SDMs fitted from the species level (SDMsp) and composed from the eight clade-level models (SDMcm). Results Genetically and environmentally defined clusters were identical. Environmental and geographical distances explained 12.6% of the phylogenetic distance variation and, overall, geographical and environmental overlap among clades was low. Large differences were detected between SDMsp and SDMcm (57.75% of disagreement in the areas predicted as suitable). Main conclusions The genetic structure within the maritime pine subspecies complex is primarily a consequence of its demographic history, as seen by the high proportion of unexplained variation in phylogenetic distances. Nevertheless, our results highlight the contribution of local environmental adaptation in shaping the lower-order, phylogeographical distribution patterns and spatial genetic structure of maritime pine: (1) genetically and environmentally defined clusters are consistent, and (2) environment, rather than geography, explained a higher proportion of variation in phylogenetic distance. SDMs, key tools in conservation management, better characterize the fundamental niche of the species when they include molecular information.