1000 resultados para Western Alps
Resumo:
Résumé Les changements climatiques du Quaternaire ont eu une influence majeure sur la distribution et l'évolution des biota septentrionaux. Les Alpes offrent un cadre spatio-temporel bien étudié pour comprendre la réactivité de la flore et le potentiel d'adaptation d'une espèce végétale face aux changements climatiques. Certaines hypothèses postulent une diversification des espèces en raison de la disparition complète de la flore des Alpes et d'un isolement important des espèces dans des refuges méridionaux durant les dernières glaciations (Tabula Rasa). Une autre hypothèse stipule le maintien de poches de résistance pour la végétation au coeur des Alpes (Nunataks). Comme de nombreuses espèces végétales présentant un grand succès écologique semblent avoir réagi aux glaciations par la multiplication de leur génome (autopolyploïdie), leur étude en milieu naturel devrait permettre de comprendre les avantages inhérents à la polyploïdie. Biscutella laevigata est un modèle emblématique de biogéographie historique, diverses études ayant montré que des populations diploïdes sont actuellement isolées dans les zones restées déglacées durant le dernier maximum glaciaire, alors que des tétraploïdes ont recolonisé l'ensemble des zones alpines mises à nu par le retrait des glaciers. Si le contexte périglaciaire semble avoir favorisé ce jeune complexe autopolyploïde, les circonstances et les avantages de cette mutation génomique ne sont pas encore clairs. Y a-t-il eu de multiples événements de polyploïdisation ? Dans quelle mesure affecte(nt)il(s) la diversité génétique et le potentiel évolutif des polyploïdes ? Les polyploïdes ont-ils une grande flexibilité génomique, favorisant une radiation adaptative, ou doivent-ils leur succès à une grande plasticité écologique ? Cette étude aborde ces questions à différentes échelles spatiales et temporelles. L'échelle régionale des Alpes occidentales permet d'aborder les facteurs distaux (aspects historiques), alors que l'échelle locale cherche à appréhender les facteurs proximaux (mécanismes évolutifs). Dans les Alpes occidentales, des populations ont été densément échantillonnées et étudiées grâce à (1) leur cytotype, (2) leur appartenance taxonomique, (3) leur habitat et (4) des marqueurs moléculaires de l'ADN chloroplastique, en vue d'établir leurs affinités évolutives. Á l'échelle locale, deux systèmes de population ont été étudiés : l'un où les populations persistent en périphérie de l'aire de distribution et l'autre au niveau du front actif de colonisation, en marge altitudinale. Les résultats à l'échelle des Alpes occidentales révèlent les sites d'intérêt (refuges glaciaires, principales barrières et voies de recolonisation) pour une espèce représentative des pelouses alpines, ainsi que pour la biodiversité régionale. Les Préalpes ont joué un rôle important dans le maintien de populations à proximité immédiate des Alpes centrales et dans l'évolution du taxon, voire de la végétation. Il est aussi démontré que l'époque glaciaire a favorisé l'autopolyploïdie polytopique et la recolonisation des Alpes occidentales par des lignées distinctes qui s'hybrident au centre des Alpes, influençant fortement leur diversité génétique et leur potentiel évolutif. L'analyse de populations locales en situations contrastées à l'aide de marqueurs AFLP montre qu'au sein d'une lignée présentant une grande expansion, la diversité génétique est façonnée par des forces évolutives différentes selon le contexte écologique et historique. Les populations persistant présentent une dispersion des gènes restreinte, engendrant une diversité génétique assez faible, mais semblent adaptées aux conditions locales de l'environnement. À l'inverse, les populations colonisant la marge altitudinale sont influencées par les effets de fondation conjugués à une importante dispersion des gènes et, si ces processus impliquent une grande diversité génétique, ils engendrent une répartition aléatoire des génotypes dans l'environnement. Les autopolyploïdes apparaissent ainsi comme capables de persister face aux changements climatiques grâce à certaines facultés d'adaptation locale et de grandes capacités à maintenir une importante diversité génétique lors de la recolonisation post-glaciaire. Summary The extreme climate changes of the Quaternary have had a major influence on species distribution and evolution. The European Alps offer a great framework to investigate flora reactivity and the adaptive potential of species under changing climate. Some hypotheses postulate diversification due to vegetation removal and important isolation in southern refugia (Tabula Rasa), while others explain phylogeographic patterns by the survival of species in favourable Nunataks within the Alps. Since numerous species have successfully reacted to past climate changes by genome multiplication (autopolyploidy), studies of such taxa in natural conditions is likely to explain the ecological success and the advantages of autopolyploidy. Early cytogeographical surveys of Biscutella laevigata have shed light on the links between autopolyploidy and glaciations by indicating that diploids are now spatially isolated in never-glaciated areas, while autotetraploids have recolonised the zones covered by glaciers- during the last glacial maximum. A periglacial context apparently favoured this young autopolyploid complex but the circumstances and the advantages of this genomic mutation remain unclear. What is the glacial history of the B. laevigata autopolyploid complex? Are there multiple events of polyploidisation? To what extent do they affect the genetic diversity and the evolutionary potential of polyploids? Is recolonisation associated with adaptive processes? How does long-term persistence affect genetic diversity? The present study addresses these questions at different spatiotemporal scales. A regional survey at the Western Alps-scale tackles distal factors (evolutionary history), while local-scale studies explore proximal factors (evolutionary mechanisms). In the Western Alps, populations have been densely sampled and studied from the (1) cytotypic, (2) morphotaxonomic, (3) habitat point of views, as well as (4) plastid DNA molecular markers, in order to infer their relationships and establish the maternal lineages phylogeography. At the local scale, populations persisting at the rear edge and populations recolonising the attitudinal margin at the leading edge have been studied by AFLPs to show how genetic diversity is shaped by different evolutionary forces across the species range. The results at the regional scale document the glacial history of a widespread species, representative of alpine meadows, in a regional area of main interest (glacial refugia, main barriers and recolonisation routes) and points out to sites of interest for regional biodiversity. The external Alps have played a major role in the maintenance of populations near the central Alps during the Last Glacial Maximum and influenced the evolution of the species, and of vegetation. Polytopic autopolyploidy in different biogeographic districts is also demonstrated. The species has had an important and rapid radiation because recolonisation took place from different refugia. The subsequent recolonisation of the Western Alps was achieved by independent lineages that are presently admixing in the central Alps. The role of the Pennic summit line is underlined as a great barrier that was permeable only through certain favourable high-altitude passes. The central Alps are thus viewed as an important crossroad where genomes with different evolutionary histories are meeting and admixing. The AFLP analysis and comparison of local populations growing in contrasted ecological and historical situations indicate that populations persisting in the external Alps present restricted gene dispersal and low genetic diversity but seem in equilibrium with their environment. On the contrary, populations colonising the attitudinal margin are mainly influenced by founder effects together with great gene dispersal and genotypes have a nearly random distribution, suggesting that recolonisation is not associated with adaptive processes. Autopolyploids that locally persist against climate changes thus seem to present adaptive ability, while those that actively recolonise the Alps are successful because of their great capacity to maintain a high genetic diversity against founder effects during recolonisation.
Resumo:
We have selected and dated three contrasting rock-types representative of the magmatic activity within the Permian layered mafic complex of Mont Collon, Austroalpine Dent Blanche nappe, Western Alps. A pegmatitic gabbro associated to the main cumulus sequence yields a concordant U/Pb zircon age of 284.2 +/- 0.6 Ma, whereas a pegmatitic granite dike crosscutting the latter yields a concordant age of 282.9 +/- 0.6 Ma. A Fe-Ti-rich ultrabasic lamprophyre, crosscutting all other lithologies of the complex, yields an 40Ar/39Ar plateau age of 260.2 +/- 0.7 Ma on a kaersutite concentrate. All ages are interpreted as magmatic. Sub-contemporaneous felsic dikes within the Mont Collon complex are ascribed to anatectic back-veining from the country-rock, related to the emplacement of the main gabbroic body in the continental crust, which is in accordance with new isotopic data. The lamprophyres have isotopic compositions typical of a depleted mantle, in contrast to those of the cumulate gabbros, close to values of the Bulk Silicate Earth. This indicates either contrasting sources for the two magma pulses - the subcontinental lithospheric mantle for the gabbros and the underlying asthenosphere for the lamprophyres - or a single depleted lithospheric source with variable degrees of crustal contamination of the gabbroic melts during their emplacement in the continental crust. The Mont Collon complex belongs to a series of Early Permian mafic massifs, which emplaced in a short time span about 285-280 Ma ago, in a limited sector of the post-Variscan continental crust now corresponding to the Austroalpine/ Southern Alpine domains and Corsica. This magmatic activity was controlled in space and time by crustal-scale transtensional shear zones.
Resumo:
Three types of garnet have been distinguished in pelitic schists from an epidote-blueschist-facies unit of the Ambin and South Vanoise Brianconnais massifs on the basis of texture, chemical zoning and mineral inclusion characterization. Type-1 garnet cores with high Mn/Ca ratios are interpreted as pre-Alpine relicts, whereas Type-1 garnet rims, Type-2 inclusion-rich porphyroblasts and smaller Type-3 garnets are Alpine. The latter are all characterized by low Mn/Ca ratios and a coexisting mineral assemblage of blue amphibole, high-Si phengite, epidote and quartz. Prograde growth conditions during Alpine D-1 high-pressure (HP) metamorphism are recorded by a decrease in Mn and increase in Fe (+/-Ca) in the Type-2 garnets, culminating in peak P-T conditions of 14-16 kbar and 500degreesC in the deepest parts of the Ambin dome. The multistage growth history of Type-1 garnets indicates a polymetamorphic history for the Ambin and South Vanoise massifs; unfortunately, no age constraints are available. The new metamorphic constraints on the Alpine event in the massifs define a metamorphic T `gap' between them and their surrounding cover (Brianconnais and upper Schistes Lustres units), which experienced metamorphism only in the stability field of carpholite-lawsonite (T < 400degreesC). These data and supporting structural studies confirm that the Ambin and South Vanoise massifs are slices of `eclogitized' continental crust tectonically extruded within the Schistes Lustres units and Brianconnais covers. The corresponding tectonic contacts with top-to-east movement are responsible for the juxtaposition of lower-grade metamorphic units on the Ambin and South Vanoise massifs.
Resumo:
The Gets nappe, a decollement cover nappe located at the top of the Prealps, is characterized by the occurrence of ophiolitic rocks. The metamorphic grade in the Gets nappe was determined using illite crystallinity and clay mineral assemblages. Samples from the same locality were analyzed to estimate variations in illite crystallinity values and in the parageneses of clay minerals, both in sedimentary elements of a breccia and in the embedding shaly flysch. For samples from one and the same locality, the range in illite crystallinity data between breccia elements and the shaly flysch is comparable to the variation between different shaly beds. Two S-N transects along the Gets nappe reveal the same metamorphic gradient, with the internal parts of the nappe being characterized by middle anchizonal metamorphism and the external parts showing diagenetic conditions. The metamorphic grade is higher within the Gets nappe than in its hangingwall (i.e. the Breche and Simme nappes), suggesting that the metamorphism in the Gets unit is transported. The timing and conditions of thrusting of the Gets Nappe onto the Br che and the Simme nappes is constrained by stratigraphic and metamorphic data.
Resumo:
The eclogite facies assemblage K-feldspar-jadeite-quartz in metagranites and metapelites from the Sesia-Lanzo Zone (Western Alps, Italy) records the equilibration pressure by dilution of the reaction jadeite + quartz = albite. The metapelites show partial transformation from a pre-Alpine assemblage of garnet (Alm(63)Prp(26)Grs(10))-K-feldspar-plagioclase-biotite +/- sillimanite to the Eo-Alpine high-pressure assemblage garnet (Alm(50)Prp(14)Grs(35))-jadeite (Jd(80-97)Di(0-4)Hd(0-8)Acm(0-7))=zoisite-phengite. Plagioclase is replaced by jadeite-zoisite-kyanite-K-feldspar-quartz and biotite is replaced by garnet-phengite or omphacite-kyanite-phengite. Equilibrium was attained only in local domains in the metapelites and therefore the K-feldspar-jadeite-quartz (KJQ) barometer was applied only to the plagioclase pseudomorphs and K-feldspar domains. The albite content of K-feldspar ranges from 4 to 11 mol% in less equilibrated assemblages from Val Savenca and from 4 to 7 mol% in the partially equilibrated samples from Monte Mucrone and the equilibrated samples from Montestrutto and Tavagnasco. Thermodynamic calculations on the stability of the assemblage K-feldspar-jadeite-quartz using available mixing data for K-feldspar and pyroxene indicate pressures of 15-21 kbar (+/- 1.6-1.9 kbar) at 550 +/- 50 degrees C. This barometer yields direct pressure estimates in high-pressure rocks where pressures are seldom otherwise fixed, although it is sensitive to analytical precision and the choice of thermodynamic mixing model for K-feldspar. Moreover, the KJQ barometer is independent of the ratio P-H2O/P-T. The inferred limiting a(H2O) for the assemblage jadeite-kyanite in the metapelites from Val Savenca is low and varies from 0.2 to 0.6.
Resumo:
The Mont-Mort metapelites are one of the best preserved relies of the Variscan unit in the Brianconnais basement. These micaschists crystallized during a poly-phase metamorphic cycle, under amphibolite facies conditions. Mineral parageneses and geothermobarometric calculations indicate a two-stage evolution. Stage (1) (550-600 degrees C and 5-8 kbar) is documented by assemblages of zoned garnet, staurolite, kyanite(?), biotite, muscovite, quartz and pla gioclase. Stage (2) (550-600 degrees C and 2 kbar) is illustrated by assemblages of andalusite, sillimanite, muscovite, biotite. This metamorphic evolution is characterized by a nearly isothermal decompression path, terminating with the formation of andalusite-bearing veins. U-Pb monazite dates at 330 Ma and Ar-40/Ar-39 muscovite dates at 290-310 Ma (without substantial evidence of argon resetting) point to Variscan metamorphism and yield an estimate of the time interval between the thermal peak and the retrogression stage within this part of the Brianconnais basement. Restoring the Brianconnais and other Alpine basement units within an existing geodynamic model of Cordillera construction and destruction, it is possible to understand better the transition from a medium pressure/high temperature regime (collision with a peak metamorphism around 330 Ma) to low-P/high-T conditions (decompression in an extensional regime) with high geothermal gradient, as recorded by the successive Variscan parageneses within the Mont-Mort metapelites.
Resumo:
Peak metamorphic temperatures for the coesite-pyrope-bearing whiteschists from the Dora Maira Massif, western Alps were determined with oxygen isotope thermometry. The deltaO-18(SMOW) values of the quartz (after coesite) (delta O-18 = 8.1 to 8.6 parts per thousand, n = 6), phengite (6.2 to 6.4 parts per thousand, n = 3), kyanite (6.1 parts per thousand, n = 2), garnet (5.5 to 5.8 parts per thousand, n = 9), ellenbergerite (6.3 parts per thousand, n = 1) and rutile (3.3. to 3.6 parts per thousand, n = 3) reflect isotopic equilibrium. Temperature estimates based on quartz-garnet-rutile fractionation are 700-750-degrees-C. Minimum pressures are 31-32 kb based on the pressure-sensitive reaction pyrope + coesite = kyanite + enstatite. In order to stabilize pyrope and coesite by the temperature-sensitive dehydration reaction talc + kyanite = pyrope + coesite + H2O, the a(H2O) must be reduced to 0.4-0.75 at 700 750-degrees-C. The reduced a(H2O) cannot be due to dilution by CO2, as pyrope is not stable at X (CO2) > 0.02 (T = 750-degrees-C; P = 30 kb). In the absence of a more exotic fluid diluent (e.g. CH4 or N2), a melt phase is required. Granite solidus temperatures are approximately 680-degrees-C/30 kb at a(H2O) = 1.0 and are calculated to be approximately 70-degrees-C higher at a(H2O) = 0.7, consistent with this hypothesis. Kyanite-jadeite-quartz bands may represent a relict melt phase. Peak P-T-f(H2O) estimates for the whiteschist are 34 +/- 2 kb, 700-750-degrees-C and 0.4-0.75. The oxygen isotope fractionation between quartz (deltaO-18 = 11.6%.) and garnet (deltaO-18 = 8.7 parts per thousand) in the surrounding orthognesiss is identical to that in the coesite-bearing unit, suggesting that the two units shared a common, final metamorphic history. Hydrogen isotope measurements were made on primary talc and phengite (deltaD(smow) = -27 to -32 parts per thousand), on secondary talc and chlorite after pyrope (deltaD = - 39 to - 44 parts per thousand) and on the surrounding biotite (deltaD = -64 parts per thousand) and phengite (deltaD = -44 parts per thousand) gneiss. All phases appear to be in near-equilibrium. The very high deltaD values for the primary hydrous phases is consistent with an initial oceanic-derived/connate fluid source. The fluid source for the retrograde talc + chlorite after pyrope may be fluids evolved locally during retrograde melt crystallization. The similar deltaD, but dissimilar deltaO-18 values of the coesite-bearing whiteschists and hosting orthogneiss suggest that the two were in hydrogen isotope equilibrium, but not oxygen isotope equilibrium. The unusual hydrogen and oxygen isotope compositions of the coesite-bearing unit can be explained as the result of metasomatism from slab-derived fluids at depth.
Resumo:
As a result of recent deep reflection and refraction seismology the crustal structure of the Western Alps is now quite well-defined. However, this raises the question of what is present below the Moho, such as a crustal eclogitic root. This study attempts to estimate the volume of this eclogitic root on the basis of palinspastic reconstructions. Even with a minimum estimate of the crustal material involved in the subduction processes which took place during the Alpine orogeny, a significant eclogitized crustal root must be present down to depths of around 100 km below the Po plain. A maximum estimate suggests that a large part of this root could now be recycled in the asthenosphere.
Resumo:
This work presents geochemistry and structural geology data concerning the low enthalpy geothermal circuits of the Argentera crystalline Massif in northwestern Italian Alps. I n this area some thermal springs (50-60 degreesC), located in the small Bagni di Vinadio village, discharge mixtures made up of a Na-Cl end-member and a Na-SO4 component. The latter is also discharged by the thermal springs of Terme di Valdieri located some kilometres apart within the same tectonic complex. Both end-members share the same meteoric origin and the same reservoir temperature, which is close to 150 degreesC. Explanations are thus required to understand how they reach the surface and how waters of the same origin and circulating in similar rocks can attain such different compositions. Sodium-sulphate waters discharged at both sites, likely represent the common interaction product of meteoric waters with the widespread granitic-migmatitic rocks of the Argentera Massif, whereas Na-CI waters originate through leaching of mineralised cataclastic rocks, which are rich in phyllosilicatic minerals and fluid inclusions, both acting as Cl- sources. Due to the relatively low inferred geothermal gradient of the region, -25C/km, meteoric waters have to descend to depths of 5.5-6 km to attain temperatures of similar to 150 degreesC. These relevant depths can be reached by descending meteoric waters, due to the recent extensional stress field, which allows the development of geothermal circulations at greater depths than in other sectors of the Alps by favouring a greater fractures aperture. The ascent of the thermal waters rakes place along brittle shear zones. In both sites, the thermal waters emerge at the bottoms of the valleys, close to either the lateral termination of a brittle shear zone at Terme di Valdieri, or a step-over between two en-echelon brittle shear zones at Bagni di Vinadio. These observations attest to a strong control operated on the location of outlet regions by both brittle tectonics and the minima in hydraulic potential inside the fractured massif.