793 resultados para Web data
Resumo:
Methods for accessing data on the Web have been the focus of active research over the past few years. In this thesis we propose a method for representing Web sites as data sources. We designed a Data Extractor data retrieval solution that allows us to define queries to Web sites and process resulting data sets. Data Extractor is being integrated into the MSemODB heterogeneous database management system. With its help database queries can be distributed over both local and Web data sources within MSemODB framework. Data Extractor treats Web sites as data sources, controlling query execution and data retrieval. It works as an intermediary between the applications and the sites. Data Extractor utilizes a two-fold "custom wrapper" approach for information retrieval. Wrappers for the majority of sites are easily built using a powerful and expressive scripting language, while complex cases are processed using Java-based wrappers that utilize specially designed library of data retrieval, parsing and Web access routines. In addition to wrapper development we thoroughly investigate issues associated with Web site selection, analysis and processing. Data Extractor is designed to act as a data retrieval server, as well as an embedded data retrieval solution. We also use it to create mobile agents that are shipped over the Internet to the client's computer to perform data retrieval on behalf of the user. This approach allows Data Extractor to distribute and scale well. This study confirms feasibility of building custom wrappers for Web sites. This approach provides accuracy of data retrieval, and power and flexibility in handling of complex cases.
Resumo:
We propose to use the Tensor Space Modeling (TSM) to represent and analyze the user’s web log data that consists of multiple interests and spans across multiple dimensions. Further we propose to use the decomposition factors of the Tensors for clustering the users based on similarity of search behaviour. Preliminary results show that the proposed method outperforms the traditional Vector Space Model (VSM) based clustering.
Resumo:
The Web is a steadily evolving resource comprising much more than mere HTML pages. With its ever-growing data sources in a variety of formats, it provides great potential for knowledge discovery. In this article, we shed light on some interesting phenomena of the Web: the deep Web, which surfaces database records as Web pages; the Semantic Web, which de�nes meaningful data exchange formats; XML, which has established itself as a lingua franca for Web data exchange; and domain-speci�c markup languages, which are designed based on XML syntax with the goal of preserving semantics in targeted domains. We detail these four developments in Web technology, and explain how they can be used for data mining. Our goal is to show that all these areas can be as useful for knowledge discovery as the HTML-based part of the Web.
Resumo:
In a pilot application based on web search engine calledWeb-based Relation Completion (WebRC), we propose to join two columns of entities linked by a predefined relation by mining knowledge from the web through a web search engine. To achieve this, a novel retrieval task Relation Query Expansion (RelQE) is modelled: given an entity (query), the task is to retrieve documents containing entities in predefined relation to the given one. Solving this problem entails expanding the query before submitting it to a web search engine to ensure that mostly documents containing the linked entity are returned in the top K search results. In this paper, we propose a novel Learning-based Relevance Feedback (LRF) approach to solve this retrieval task. Expansion terms are learned from training pairs of entities linked by the predefined relation and applied to new entity-queries to find entities linked by the same relation. After describing the approach, we present experimental results on real-world web data collections, which show that the LRF approach always improves the precision of top-ranked search results to up to 8.6 times the baseline. Using LRF, WebRC also shows performances way above the baseline.
Resumo:
The application of semantic technologies to the integration of biological data and the interoperability of bioinformatics analysis and visualization tools has been the common theme of a series of annual BioHackathons hosted in Japan for the past five years. Here we provide a review of the activities and outcomes from the BioHackathons held in 2011 in Kyoto and 2012 in Toyama. In order to efficiently implement semantic technologies in the life sciences, participants formed various sub-groups and worked on the following topics: Resource Description Framework (RDF) models for specific domains, text mining of the literature, ontology development, essential metadata for biological databases, platforms to enable efficient Semantic Web technology development and interoperability, and the development of applications for Semantic Web data. In this review, we briefly introduce the themes covered by these sub-groups. The observations made, conclusions drawn, and software development projects that emerged from these activities are discussed.
Manipulating Interaction Strengths and the Consequences for Trivariate Patterns in a Marine Food Web
Resumo:
We are experiencing a global extinction crisis as a result of climate change and human-induced alteration of natural habitats, with large predators at high trophic levels in food webs being particularly vulnerable. Unfortunately, there is a scarcity of food web data that can be used to assess how species extinctions alter the structure and stability of temporally and spatially replicated networks. We established a series of large experimental mesocosms in a shallow subtidal benthic marine system and constructed food webs for each replicate. After 6 months of community assembly, we removed large predators from the core communities of 20 experimental food webs, based on the strength of their trophic interactions, and monitored the changes in the networks' structure and stability over an 8-month period. Our analyses revealed the importance of allometric relationships and size-structuring in natural communities as a means of preserving food web structure and sustainability, despite significant changes in the diversity, stability and productivity of the system.
Resumo:
The integration of detailed information on feeding interactions with measures of abundance and body mass of individuals provides a powerful platform for understanding ecosystem organisation. Metabolism and, by proxy, body mass constrain the flux, turnover and storage of energy and biomass in food webs. Here, we present the first food web data for Lough Hyne, a species rich Irish Sea Lough. Through the application of individual-and size-based analysis of the abundance-body mass relationship, we tested predictions derived from the metabolic theory of ecology. We found that individual body mass constrained the flux of biomass and determined its distribution within the food web. Body mass was also an important determinant of diet width and niche overlap, and predator diets were nested hierarchically, such that diet width increased with body mass. We applied a novel measure of predator-prey biomass flux which revealed that most interactions in Lough Hyne were weak, whereas only a few were strong. Further, the patterning of interaction strength between prey sharing a common predator revealed that strong interactions were nearly always coupled with weak interactions. Our findings illustrate that important insights into the organisation, structure and stability of ecosystems can be achieved through the theoretical exploration of detailed empirical data.
Resumo:
Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. This survey analyzes the convergence of trends from both areas: Growing numbers of researchers work on improving the results of Web Mining by exploiting semantic structures in the Web, and they use Web Mining techniques for building the Semantic Web. Last but not least, these techniques can be used for mining the Semantic Web itself. The second aim of this paper is to use these concepts to circumscribe what Web space is, what it represents and how it can be represented and analyzed. This is used to sketch the role that Semantic Web Mining and the software agents and human agents involved in it can play in the evolution of Web space.
Resumo:
Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. This survey analyzes the convergence of trends from both areas: an increasing number of researchers is working on improving the results of Web Mining by exploiting semantic structures in the Web, and they make use of Web Mining techniques for building the Semantic Web. Last but not least, these techniques can be used for mining the Semantic Web itself. The Semantic Web is the second-generation WWW, enriched by machine-processable information which supports the user in his tasks. Given the enormous size even of today’s Web, it is impossible to manually enrich all of these resources. Therefore, automated schemes for learning the relevant information are increasingly being used. Web Mining aims at discovering insights about the meaning of Web resources and their usage. Given the primarily syntactical nature of the data being mined, the discovery of meaning is impossible based on these data only. Therefore, formalizations of the semantics of Web sites and navigation behavior are becoming more and more common. Furthermore, mining the Semantic Web itself is another upcoming application. We argue that the two areas Web Mining and Semantic Web need each other to fulfill their goals, but that the full potential of this convergence is not yet realized. This paper gives an overview of where the two areas meet today, and sketches ways of how a closer integration could be profitable.
Resumo:
Abstract A frequent assumption in Social Media is that its open nature leads to a representative view of the world. In this talk we want to consider bias occurring in the Social Web. We will consider a case study of liquid feedback, a direct democracy platform of the German pirate party as well as models of (non-)discriminating systems. As a conclusion of this talk we stipulate the need of Social Media systems to bias their working according to social norms and to publish the bias they introduce. Speaker Biography: Prof Steffen Staab Steffen studied in Erlangen (Germany), Philadelphia (USA) and Freiburg (Germany) computer science and computational linguistics. Afterwards he worked as researcher at Uni. Stuttgart/Fraunhofer and Univ. Karlsruhe, before he became professor in Koblenz (Germany). Since March 2015 he also holds a chair for Web and Computer Science at Univ. of Southampton sharing his time between here and Koblenz. In his research career he has managed to avoid almost all good advice that he now gives to his team members. Such advise includes focusing on research (vs. company) or concentrating on only one or two research areas (vs. considering ontologies, semantic web, social web, data engineering, text mining, peer-to-peer, multimedia, HCI, services, software modelling and programming and some more). Though, actually, improving how we understand and use text and data is a good common denominator for a lot of Steffen's professional activities.
Resumo:
Pós-graduação em Ciência da Informação - FFC
Resumo:
Pós-graduação em Ciência da Informação - FFC
Resumo:
The web is continuously evolving into a collection of many data, which results in the interest to collect and merge these data in a meaningful way. Based on that web data, this paper describes the building of an ontology resting on fuzzy clustering techniques. Through continual harvesting folksonomies by web agents, an entire automatic fuzzy grassroots ontology is built. This self-updating ontology can then be used for several practical applications in fields such as web structuring, web searching and web knowledge visualization.A potential application for online reputation analysis, added value and possible future studies are discussed in the conclusion.