849 resultados para Wearable technologies
Resumo:
Embedded wireless sensor network (WSN) systems have been developed and used in a wide variety of applications such as local automatic environmental monitoring; medical applications analysing aspects of fitness and health energy metering and management in the built environment as well as traffic pattern analysis and control applications. While the purpose and functions of embedded wireless sensor networks have a myriad of applications and possibilities in the future, a particular implementation of these ambient sensors is in the area of wearable electronics incorporated into body area networks and everyday garments. Some of these systems will incorporate inertial sensing devices and other physical and physiological sensors with a particular focus on the application areas of athlete performance monitoring and e-health. Some of the important physical requirements for wearable antennas are that they are light-weight, small and robust and should also use materials that are compatible with a standard manufacturing process such as flexible polyimide or fr4 material where low cost consumer market oriented products are being produced. The substrate material is required to be low loss and flexible and often necessitates the use of thin dielectric and metallization layers. This paper describes the development of such a wearable, flexible antenna system for ISM band wearable wireless sensor networks. The material selected for the development of the wearable system in question is DE104i characterized by a dielectric constant of 3.8 and a loss tangent of 0.02. The antenna feed line is a 50 Ohm microstrip topology suitable for use with standard, high-performance and low-cost SMA-type RF connector technologies, widely used for these types of applications. The desired centre frequency is aimed at the 2.4GHz ISM band to be compatible with IEEE 802.15.4 Zigbee communication protocols and the Bluetooth standard which operate in this band.
Resumo:
Advanced sensory systems address a number of major obstacles towards the provision for cost effective and proactive rehabilitation. Many of these systems employ technologies such as high-speed video or motion capture to generate quantitative measurements. However these solutions are accompanied by some major limitations including extensive set-up and calibration, restriction to indoor use, high cost and time consuming data analysis. Additionally many do not quantify improvement in a rigorous manner for example gait analysis for 5 minutes as opposed to 24 hour ambulatory monitoring. This work addresses these limitations using low cost, wearable wireless inertial measurement as a mobile and minimal infrastructure alternative. In cooperation with healthcare professionals the goal is to design and implement a reconfigurable and intelligent movement capture system. A key component of this work is an extensive benchmark comparison with the 'gold standard' VICON motion capture system.
Resumo:
When miniaturized wireless sensors are placed on or close to the human body, they can experience a significant loss inperformance due to antenna detuning, resulting in degradationof wireless performance as well as decreased battery lifetime.Several antenna tuning technologies have been proposed formobile wireless devices but devices suitable for widespread integration have yet to emerge. This paper highlights the possible advantages of antenna tuning for wearable wireless sensors and presents the design and characterization of a prototype 433MHz tuner module.
Resumo:
This special issue provides the latest research and development on wireless mobile wearable communications. According to a report by Juniper Research, the market value of connected wearable devices is expected to reach $1.5 billion by 2014, and the shipment of wearable devices may reach 70 million by 2017. Good examples of wearable devices are the prominent Google Glass and Microsoft HoloLens. As wearable technology is rapidly penetrating our daily life, mobile wearable communication is becoming a new communication paradigm. Mobile wearable device communications create new challenges compared to ordinary sensor networks and short-range communication. In mobile wearable communications, devices communicate with each other in a peer-to-peer fashion or client-server fashion and also communicate with aggregation points (e.g., smartphones, tablets, and gateway nodes). Wearable devices are expected to integrate multiple radio technologies for various applications' needs with small power consumption and low transmission delays. These devices can hence collect, interpret, transmit, and exchange data among supporting components, other wearable devices, and the Internet. Such data are not limited to people's personal biomedical information but also include human-centric social and contextual data. The success of mobile wearable technology depends on communication and networking architectures that support efficient and secure end-to-end information flows. A key design consideration of future wearable devices is the ability to ubiquitously connect to smartphones or the Internet with very low energy consumption. Radio propagation and, accordingly, channel models are also different from those in other existing wireless technologies. A huge number of connected wearable devices require novel big data processing algorithms, efficient storage solutions, cloud-assisted infrastructures, and spectrum-efficient communications technologies.
Resumo:
A world of ubiquitous computing, full of networked mobile and embedded technologies, is approaching. The benefits of this technology are numerous, and act as the major driving force behind its development. These benefits are brought about, in part, by ubiquitous monitoring (UM): the continuous and wide spread collection of ?significant amounts of data about users
Resumo:
Movement analysis carried out in laboratory settings is a powerful, but costly solution since it requires dedicated instrumentation, space and personnel. Recently, new technologies such as the magnetic and inertial measurement units (MIMU) are becoming widely accepted as tools for the assessment of human motion in clinical and research settings. They are relatively easy-to-use and potentially suitable for estimating gait kinematic features, including spatio-temporal parameters. The objective of this thesis regards the development and testing in clinical contexts of robust MIMUs based methods for assessing gait spatio-temporal parameters applicable across a number of different pathological gait patterns. First, considering the need of a solution the least obtrusive as possible, the validity of the single unit based approach was explored. A comparative evaluation of the performance of various methods reported in the literature for estimating gait temporal parameters using a single unit attached to the trunk first in normal gait and then in different pathological gait conditions was performed. Then, the second part of the research headed towards the development of new methods for estimating gait spatio-temporal parameters using shank worn MIMUs on different pathological subjects groups. In addition to the conventional gait parameters, new methods for estimating the changes of the direction of progression were explored. Finally, a new hardware solution and relevant methodology for estimating inter-feet distance during walking was proposed. Results of the technical validation of the proposed methods at different walking speeds and along different paths against a gold standard were reported and showed that the use of two MIMUs attached to the lower limbs associated with a robust method guarantee a much higher accuracy in determining gait spatio-temporal parameters. In conclusion, the proposed methods could be reliably applied to various abnormal gaits obtaining in some cases a comparable level of accuracy with respect to normal gait.
Resumo:
Il Diabete, modello paradigmatico delle malattie croniche, sta assumendo negli ultimi anni le proporzioni di una pandemia, che non ha intenzione di arrestarsi, ma del quale, con l’aumento dei fattori di rischio, aumentano prevalenza e incidenza. Secondo stime autorevoli il numero delle persone con diabete nel 2035 aumenterà fino a raggiungere i 382 milioni di casi. Una patologia complessa che richiede lo sforzo di una vasta gamma di professionisti, per ridurre in futuro in maniera significativa i costi legati a questa patologia e nel contempo mantenere e addirittura migliorare gli standard di cura. Una soluzione è rappresentata dall'impiego delle ICT, Information and Communication Technologies. La continua innovazione tecnologica dei medical device per diabetici lascia ben sperare, dietro la spinta di capitali sempre più ingenti che iniziano a muoversi in questo mercato del futuro. Sempre più device tecnologicamente avanzati, all’avanguardia e performanti, sono a disposizione del paziente diabetico, che può migliorare tutti processi della cura, contenendo le spese. Di fondamentale importanza sono le BAN reti di sensori e wearable device, i cui dati diventano parte di un sistema di gestione delle cure più ampio. A questo proposito METABO è un progetto ICT europeo dedicato allo studio ed al supporto di gestione metabolica del diabete. Si concentra sul miglioramento della gestione della malattia, fornendo a pazienti e medici una piattaforma software tecnologicamente avanzata semplice e intuitiva, per aiutarli a gestire tutte le informazioni relative al trattamento del diabete. Innovativo il Clinical Pathway, che a partire da un modello Standard con procedimenti semplici e l’utilizzo di feedback del paziente, viene progressivamente personalizzato con le progressive modificazioni dello stato patologico, psicologico e non solo. La possibilità di e-prescribing per farmaci e device, e-learning per educare il paziente, tenerlo sotto stretto monitoraggio anche alla guida della propria auto, la rendono uno strumento utile e accattivante.
Resumo:
It is essential to remotely and continuously monitor the movements of individuals in many social areas, for example, taking care of aging people, physical therapy, athletic training etc. Many methods have been used, such as video record, motion analysis or sensor-based methods. Due to the limitations in remote communication, power consumption, portability and so on, most of them are not able to fulfill the requirements. The development of wearable technology and cloud computing provides a new efficient way to achieve this goal. This paper presents an intelligent human movement monitoring system based on a smartwatch, an Android smartphone and a distributed data management engine. This system includes advantages of wide adaptability, remote and long-term monitoring capacity, high portability and flexibility. The structure of the system and its principle are introduced. Four experiments are designed to prove the feasibility of the system. The results of the experiments demonstrate the system is able to detect different actions of individuals with adequate accuracy.
Resumo:
Hoy en día asistimos a un creciente interés por parte de la sociedad hacia el cuidado de la salud. Esta afirmación viene apoyada por dos realidades. Por una parte, el aumento de las prácticas saludables (actividad deportiva, cuidado de la alimentación, etc.). De igual manera, el auge de los dispositivos inteligentes (relojes, móviles o pulseras) capaces de medir distintos parámetros físicos como el pulso cardíaco, el ritmo respiratorio, la distancia recorrida, las calorías consumidas, etc. Combinando ambos factores (interés por el estado de salud y disponibilidad comercial de dispositivos inteligentes) están surgiendo multitud de aplicaciones capaces no solo de controlar el estado actual de salud, también de recomendar al usuario cambios de hábitos que lleven hacia una mejora en su condición física. En este contexto, los llamados dispositivos llevables (weareables) unidos al paradigma de Internet de las cosas (IoT, del inglés Internet of Things) permiten la aparición de nuevos nichos de mercado para aplicaciones que no solo se centran en la mejora de la condición física, ya que van más allá proponiendo soluciones para el cuidado de pacientes enfermos, la vigilancia de niños o ancianos, la defensa y la seguridad, la monitorización de agentes de riesgo (como bomberos o policías) y un largo etcétera de aplicaciones por llegar. El paradigma de IoT se puede desarrollar basándose en las existentes redes de sensores inalámbricos (WSN, del inglés Wireless Sensor Network). La conexión de los ya mencionados dispositivos llevables a estas redes puede facilitar la transición de nuevos usuarios hacia aplicaciones IoT. Pero uno de los problemas intrínsecos a estas redes es su heterogeneidad. En efecto, existen multitud de sistemas operativos, protocolos de comunicación, plataformas de desarrollo, soluciones propietarias, etc. El principal objetivo de esta tesis es realizar aportaciones significativas para solucionar no solo el problema de la heterogeneidad, sino también de dotar de mecanismos de seguridad suficientes para salvaguardad la integridad de los datos intercambiados en este tipo de aplicaciones. Algo de suma importancia ya que los datos médicos y biométricos de los usuarios están protegidos por leyes nacionales y comunitarias. Para lograr dichos objetivos, se comenzó con la realización de un completo estudio del estado del arte en tecnologías relacionadas con el marco de investigación (plataformas y estándares para WSNs e IoT, plataformas de implementación distribuidas, dispositivos llevables y sistemas operativos y lenguajes de programación). Este estudio sirvió para tomar decisiones de diseño fundamentadas en las tres contribuciones principales de esta tesis: un bus de servicios para dispositivos llevables (WDSB, Wearable Device Service Bus) basado en tecnologías ya existentes tales como ESB, WWBAN, WSN e IoT); un protocolo de comunicaciones inter-dominio para dispositivos llevables (WIDP, Wearable Inter-Domain communication Protocol) que integra en una misma solución protocolos capaces de ser implementados en dispositivos de bajas capacidades (como lo son los dispositivos llevables y los que forman parte de WSNs); y finalmente, la tercera contribución relevante es una propuesta de seguridad para WSN basada en la aplicación de dominios de confianza. Aunque las contribuciones aquí recogidas son de aplicación genérica, para su validación se utilizó un escenario concreto de aplicación: una solución para control de parámetros físicos en entornos deportivos, desarrollada dentro del proyecto europeo de investigación “LifeWear”. En este escenario se desplegaron todos los elementos necesarios para validar las contribuciones principales de esta tesis y, además, se realizó una aplicación para dispositivos móviles por parte de uno de los socios del proyecto (lo que contribuyó con una validación externa de la solución). En este escenario se usaron dispositivos llevables tales como un reloj inteligente, un teléfono móvil con sistema operativo Android y un medidor del ritmo cardíaco inalámbrico capaz de obtener distintos parámetros fisiológicos del deportista. Sobre este escenario se realizaron diversas pruebas de validación mediante las cuales se obtuvieron resultados satisfactorios. ABSTRACT Nowadays, society is shifting towards a growing interest and concern on health care. This phenomenon can be acknowledged by two facts: first, the increasing number of people practising some kind of healthy activity (sports, balanced diet, etc.). Secondly, the growing number of commercial wearable smart devices (smartwatches or bands) able to measure physiological parameters such as heart rate, breathing rate, distance or consumed calories. A large number of applications combining both facts are appearing. These applications are not only able to monitor the health status of the user, but also to provide recommendations about routines in order to improve the mentioned health status. In this context, wearable devices merged with the Internet of Things (IoT) paradigm enable the proliferation of new market segments for these health wearablebased applications. Furthermore, these applications can provide solutions for the elderly or baby care, in-hospital or in-home patient monitoring, security and defence fields or an unforeseen number of future applications. The introduced IoT paradigm can be developed with the usage of existing Wireless Sensor Networks (WSNs) by connecting the novel wearable devices to them. In this way, the migration of new users and actors to the IoT environment will be eased. However, a major issue appears in this environment: heterogeneity. In fact, there is a large number of operating systems, hardware platforms, communication and application protocols or programming languages, each of them with unique features. The main objective of this thesis is defining and implementing a solution for the intelligent service management in wearable and ubiquitous devices so as to solve the heterogeneity issues that are presented when dealing with interoperability and interconnectivity of devices and software of different nature. Additionally, a security schema based on trust domains is proposed as a solution to the privacy problems arising when private data (e.g., biomedical parameters or user identification) is broadcasted in a wireless network. The proposal has been made after a comprehensive state-of-the-art analysis, and includes the design of a Wearable Device Service Bus (WDSB) including the technologies collected in the requirement analysis (ESB, WWBAN, WSN and IoT). Applications are able to access the WSN services regardless of the platform and operating system where they are running. Besides, this proposal also includes the design of a Wearable Inter-Domain communication Protocols set (WIDP) which integrates lightweight protocols suitable to be used in low-capacities devices (REST, JSON, AMQP, CoAP, etc...). Furthermore, a security solution for service management based on a trustworthy domains model to deploy security services in WSNs has been designed. Although the proposal is a generic framework for applications based on services provided by wearable devices, an application scenario for testing purposes has been included. In this validation scenario it has been presented an autonomous physical condition performance system, based on a WSN, bringing the possibility to include several elements in an IoT scenario: a smartwatch, a physiological monitoring device and a smartphone. In summary, the general objective of this thesis is solving the heterogeneity and security challenges arising when developing applications for WSNs and wearable devices. As it has been presented in the thesis, the solution proposed has been successfully validated in a real scenario and the obtained results were satisfactory.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Long term recording of biomedical signals such as ECG, EMG, respiration and other information (e.g. body motion) can improve diagnosis and potentially monitor the evolution of many widespread diseases. However, long term monitoring requires specific solutions, portable and wearable equipment that should be particularly comfortable for patients. The key-issues of portable biomedical instrumentation are: power consumption, long-term sensor stability, comfortable wearing and wireless connectivity. In this scenario, it would be valuable to realize prototypes using available technologies to assess long-term personal monitoring and foster new ways to provide healthcare services. The aim of this work is to discuss the advantages and the drawbacks in long term monitoring of biopotentials and body movements using textile electrodes embedded in clothes. The textile electrodes were embedded into garments; tiny shirt and short were used to acquire electrocardiographic and electromyographic signals. The garment was equipped with low power electronics for signal acquisition and data wireless transmission via Bluetooth. A small, battery powered, biopotential amplifier and three-axes acceleration body monitor was realized. Patient monitor incorporates a microcontroller, analog-to-digital signal conversion at programmable sampling frequencies. The system was able to acquire and to transmit real-time signals, within 10 m range, to any Bluetooth device (including PDA or cellular phone). The electronics were embedded in the shirt resulting comfortable to wear for patients. Small size MEMS 3-axes accelerometers were also integrated. © 2011 IEEE.