974 resultados para Wear resistance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aligned carbon nanotube (CNT) polymer composites are envisioned as the next-generation composite materials for a wide range of applications. In this work, we investigate the erosive wear behavior of epoxy matrix composites reinforced with both randomly dispersed and aligned carbon nanotube (CNT) arrays. The aligned CNT composites are prepared in two different configurations, where the sidewalls and ends of nanotubes are exposed to the composite surface. Results have shown that the composite with vertically aligned CNT-arrays exhibits superior erosive wear resistance compared to any of the other types of composites, and the erosion rate reaches a similar performance level to that of carbon steel at 20° impingement angle. The erosive wear mechanism of this type of composite, at various impingement angles, is studied by Scanning Electron Microscopy (SEM). We report that the erosive wear performance shows strong dependence on the alignment geometries of CNTs within the epoxy matrix under identical nanotube loading fractions. Correlations between the eroded surface roughness and the erosion rates of the CNT composites are studied by surface profilometry. This work demonstrates methods to fabricate CNT based polymer composites with high loading fractions of the filler, alignment control of nanotubes and optimized erosive wear properties. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measured the wear resistances of alumina, alumina/silicon carbide composite and alumina/mullite composite by abrasive wear. And we studied the influence of fracture mode and worn surface pullout on wear resistance. The results are as follows: the main wear mechanisms of alumina and alumina/silicon carbide were fracture wear and plastic wear respectively, and for alumina/mullite composite, fracture wear and plastic wear mechanisms worked together. The wear resistance of the alumina/silicon carbide composite and the alumina/mullite composite was better by a factor of 1 similar to 3 than that of the monolithic alumina. There were two main reasons for the better wear resistance, i.e., the improved mechanical properties and the more smooth worn surfaces. However, The primary reason was the reduction of area fraction of pullout on the worn surfaces induced by fracture mode transition. (C) 2007 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alumina and alumina/mullite composites with mullite content of 0.96-8.72 vol.% were subjected to an abrasive wear test under loads of 0.1-2.0 N with a ball-on-disc apparatus. The wear rate and area fraction of pullout f(po) on the worn surfaces were measured. The wear resistances of the alumina/mullite composites were better by a factor of 1-2 than that of pure alumina. The main wear mechanism of alumina is fracture wear, and for alumina/mullite composites, fracture wear and plastic wear mechanisms work together. The influence of mechanical properties on wear resistance was estimated by Evans' method. It was found that the wear rate depends on f(po), and the primary reason for the better wear resistance of alumina/mullite composites is the reduction off, induced by fracture mode transition. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electroless nickel (EN) coatings are recognised for their hardness and wear resistance in automotive and aerospace industries. In this work, electroless Ni–P coatings were deposited on aluminium alloy substrate LM24 (Al–9 wt.% Si alloy) and the effect of post treatment on the wear resistance was studied. The post treatments included heat treatment and lapping with two different surface textures. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and micro-abrasion tester were used to analyse morphology, structure and abrasive wear resistance of the coatings. Post heat treatment significantly improved the coating density and structure, giving rise to enhanced hardness and wear resistance. Microhardness of electroless Ni–P coatings with thickness of about 15 μm increased due to the formation of Ni3P after heat treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, three different elastomers, namely hydrogenated nitrile butadiene rubber, fluoroelastomer and silicone, have been subjected to two different hard metallised coatings by ion implantation process. The three different elastomers are commonly used in various seal applications, where reduced wear and gas permeability are essential in maintaining seal performance and functionality. Samples of these rubbers have been coated with chromium coating in one set of tests. In the second set of tests, samples of elastomers have been coated with tungsten carbide coating being deposited on all the three different elastomers. Wear, gas permeability and mechanical behaviour of the coated samples were compared with each other and with the control uncoated elastomers. All the coated samples showed good reduction in gas permeability. With the use of metallised coatings, there has been improved resistance to wear in all the coated samples. Adhesion strength and effect of coating on the elastomer have been investigated by mechanical testing. Mechanical tests revealed good adhesion of metal coatings on all the rubber samples, and there was no detrimental effect on the mechanical properties after coating. © 2012 Institute of Materials, Minerals and Mining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abrasion by glass fibers during injection molding of fiber reinforced plastics raises new challenges to the wear performance of the molds. In the last few decades, a large number of PVD and CVD coatings have been developed with the aim of minimizing abrasion problems. In this work, two different coatings were tested in order to increase the wear resistance of the surface of a mold used for glass fiber reinforced plastics: TiAlSiN and CrN/CrCN/DLC. TiAlSiN was deposited as a graded monolayer coating while CrN/CrCN/DLC was a nanostructured coating consisting of three distinct layers. Both coatings were produced by PVD unbalanced magnetron sputtering and were characterized using scanning electron microscopy (SEM) provided with energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), micro hardness (MH) and scratch test analysis. Coating morphology, thickness, roughness, chemical composition and structure, hardness and adhesion to the substrate were investigated. Wear resistance was characterized through industrial tests with coated samples and an uncoated reference sample inserted in a feed channel of a plastic injection mold working with 30 wt.% glass fiber reinforced polypropylene. Results after 45,000 injection cycles indicate that the wear resistance of the mold was increased by a factor of 25 and 58, by the TiAlSiN and CrN/CrCN/DLC coatings, respectively, over the uncoated mold steel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experimental research indicates that superelastic shape memory alloy nickel–titanium (NiTi) is superior to stainless steel against wear and could be applied in tribological engineering. It is believed that the super wear resistance of shape memory alloys is mainly due to the recovery of the superelastic deformation. Our recent wear study indicates that wear rate is very sensitive to the maximum contact pressure. In the present investigation, which involves applying Hertz contact theory and the finite element method, the wear behaviour of shape memory alloys is examined against that of stainless steels through analyzing the maximum contact pressure and the plastic deformation. Our investigation indicates that the contribution of superelasticity to the high wear resistance of NiTi is directly linked to the low transformation stress and the large recoverable transformation strain. Furthermore, the low Young's modulus of this alloy also plays an important role to reduce the maximum contact pressure and therefore reduce the wear rate. Additionally, the high plastic yield strength of transformed martensite NiTi enhances its wear resistance further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most interesting alternatives for replacement of hard chrome plating is tungsten carbide thermal spray coating applied by the high velocity oxy-fuel (HVOF) process which presents a safer, cleaner and less expensive alternative to chromium plating. The objective of this research is to compare the influence of the tungsten carbide-17cobalt (WC- 17Co) coating applied by high velocity oxy fuel (HVOF) process with that of hard-chromium electroplating on the fatigue strength and abrasive wear of AISI 4340 steel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The purpose of this work was to submit the Nitinol files to plasma immersion ion implantation (PIII) and evaluate the effects of the surface treatment. Materials and Methods Wear resistance was determined in vitro by using an equipment for the application of horizontal movements on previously prepared notched plates made of resin. Vickers microhardness was measured in plates and files, before and after surface treatment and the surface chemical composition of the instruments was determined by X-rays photoelectron spectroscopy. Results The hardness values found for the treated Nitinol files were significantly lower than the hardness values measured before the implantation process. The comparison of commercially available instruments shows that the wear resistance of the stainless steel file is higher than the resistance of the Nitinol. Conclusions The results found led to the conclusion that the surface treatment significantly increased the Nitinol files wear resistance.