897 resultados para Wavelet packet transform
Resumo:
Speech is a natural mode of communication for people and speech recognition is an intensive area of research due to its versatile applications. This paper presents a comparative study of various feature extraction methods based on wavelets for recognizing isolated spoken words. Isolated words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. This work includes two speech recognition methods. First one is a hybrid approach with Discrete Wavelet Transforms and Artificial Neural Networks and the second method uses a combination of Wavelet Packet Decomposition and Artificial Neural Networks. Features are extracted by using Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Training, testing and pattern recognition are performed using Artificial Neural Networks (ANN). The proposed method is implemented for 50 speakers uttering 20 isolated words each. The experimental results obtained show the efficiency of these techniques in recognizing speech
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e Computadores
Resumo:
Tot seguit presentem un entorn per analitzar senyals de tot tipus amb LDB (Local Discriminant Bases) i MLDB (Modified Local Discriminant Bases). Aquest entorn utilitza funcions desenvolupades en el marc d’una tesi en fase de desenvolupament. Per entendre part d’aquestes funcions es requereix un nivell de coneixement avançat de processament de senyals. S’han extret dels treballs realitzats per Naoki Saito [3], que s’han agafat com a punt de partida per la realització de l’algorisme de la tesi doctoral no finalitzada de Jose Antonio Soria. Aquesta interfície desenvolupada accepta la incorporació de nous paquets i funcions. Hem deixat un menú preparat per integrar Sinus IV packet transform i Cosine IV packet transform, tot i que també podem incorporar-n’hi altres. L’aplicació consta de dues interfícies, un Assistent i una interfície principal. També hem creat una finestra per importar i exportar les variables desitjades a diferents entorns. Per fer aquesta aplicació s’han programat tots els elements de les finestres, en lloc d’utilitzar el GUIDE (Graphical User Interface Development Enviroment) de MATLAB, per tal que sigui compatible entre les diferents versions d’aquest programa. En total hem fet 73 funcions en la interfície principal (d’aquestes, 10 pertanyen a la finestra d’importar i exportar) i 23 en la de l’Assistent. En aquest treball només explicarem 6 funcions i les 3 de creació d’aquestes interfícies per no fer-lo excessivament extens. Les funcions que explicarem són les més importants, ja sigui perquè s’utilitzen sovint, perquè, segons la complexitat McCabe, són les més complicades o perquè són necessàries pel processament del senyal. Passem cada entrada de dades per part de l’usuari per funcions que ens detectaran errors en aquesta entrada, com eliminació de zeros o de caràcters que no siguin números, com comprovar que són enters o que estan dins dels límits màxims i mínims que li pertoquen.
Resumo:
Tot seguit presentem un entorn per analitzar senyals de tot tipus amb LDB (Local Discriminant Bases) i MLDB (Modified Local Discriminant Bases). Aquest entorn utilitza funcions desenvolupades en el marc d’una tesi en fase de desenvolupament. Per entendre part d’aquestes funcions es requereix un nivell de coneixement avançat de processament de senyals. S’han extret dels treballs realitzats per Naoki Saito [3], que s’han agafat com a punt de partida per la realització de l’algorisme de la tesi doctoral no finalitzada de Jose Antonio Soria. Aquesta interfície desenvolupada accepta la incorporació de nous paquets i funcions. Hem deixat un menú preparat per integrar Sinus IV packet transform i Cosine IV packet transform, tot i que també podem incorporar-n’hi altres. L’aplicació consta de dues interfícies, un Assistent i una interfície principal. També hem creat una finestra per importar i exportar les variables desitjades a diferents entorns. Per fer aquesta aplicació s’han programat tots els elements de les finestres, en lloc d’utilitzar el GUIDE (Graphical User Interface Development Enviroment) de MATLAB, per tal que sigui compatible entre les diferents versions d’aquest programa. En total hem fet 73 funcions en la interfície principal (d’aquestes, 10 pertanyen a la finestra d’importar i exportar) i 23 en la de l’Assistent. En aquest treball només explicarem 6 funcions i les 3 de creació d’aquestes interfícies per no fer-lo excessivament extens. Les funcions que explicarem són les més importants, ja sigui perquè s’utilitzen sovint, perquè, segons la complexitat McCabe, són les més complicades o perquè són necessàries pel processament del senyal. Passem cada entrada de dades per part de l’usuari per funcions que ens detectaran errors en aquesta entrada, com eliminació de zeros o de caràcters que no siguin números, com comprovar que són enters o que estan dins dels límits màxims i mínims que li pertoquen.
Resumo:
Speech processing and consequent recognition are important areas of Digital Signal Processing since speech allows people to communicate more natu-rally and efficiently. In this work, a speech recognition system is developed for re-cognizing digits in Malayalam. For recognizing speech, features are to be ex-tracted from speech and hence feature extraction method plays an important role in speech recognition. Here, front end processing for extracting the features is per-formed using two wavelet based methods namely Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Naive Bayes classifier is used for classification purpose. After classification using Naive Bayes classifier, DWT produced a recognition accuracy of 83.5% and WPD produced an accuracy of 80.7%. This paper is intended to devise a new feature extraction method which produces improvements in the recognition accuracy. So, a new method called Dis-crete Wavelet Packet Decomposition (DWPD) is introduced which utilizes the hy-brid features of both DWT and WPD. The performance of this new approach is evaluated and it produced an improved recognition accuracy of 86.2% along with Naive Bayes classifier.
Resumo:
An important topic in genomic sequence analysis is the identification of protein coding regions. In this context, several coding DNA model-independent methods based on the occurrence of specific patterns of nucleotides at coding regions have been proposed. Nonetheless, these methods have not been completely suitable due to their dependence on an empirically predefined window length required for a local analysis of a DNA region. We introduce a method based on a modified Gabor-wavelet transform (MGWT) for the identification of protein coding regions. This novel transform is tuned to analyze periodic signal components and presents the advantage of being independent of the window length. We compared the performance of the MGWT with other methods by using eukaryote data sets. The results show that MGWT outperforms all assessed model-independent methods with respect to identification accuracy. These results indicate that the source of at least part of the identification errors produced by the previous methods is the fixed working scale. The new method not only avoids this source of errors but also makes a tool available for detailed exploration of the nucleotide occurrence.
Resumo:
This paper proposes artificial neural networks in combination with wavelet transform for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. Results from a real-world case study are presented. A comparison is carried out, taking into account the results obtained with other approaches. Finally, conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We introduce a new wavelet transform within the framework of the local fractional calculus. An illustrative example of local fractional wavelet transform is also presented.
Resumo:
In this paper, the fractional Fourier transform (FrFT) is applied to the spectral bands of two component mixture containing oxfendazole and oxyclozanide to provide the multicomponent quantitative prediction of the related substances. With this aim in mind, the modulus of FrFT spectral bands are processed by the continuous Mexican Hat family of wavelets, being denoted by MEXH-CWT-MOFrFT. Four modulus sets are obtained for the parameter a of the FrFT going from 0.6 up to 0.9 in order to compare their effects upon the spectral and quantitative resolutions. Four linear regression plots for each substance were obtained by measuring the MEXH-CWT-MOFrFT amplitudes in the application of the MEXH family to the modulus of the FrFT. This new combined powerful tool is validated by analyzing the artificial samples of the related drugs, and it is applied to the quality control of the commercial veterinary samples.
Resumo:
In this paper, the fractional Fourier transform (FrFT) is applied to the spectral bands of two component mixture containing oxfendazole and oxyclozanide to provide the multicomponent quantitative prediction of the related substances. With this aim in mind, the modulus of FrFT spectral bands are processed by the continuous Mexican Hat family of wavelets, being denoted by MEXH-CWT-MOFrFT. Four modulus sets are obtained for the parameter a of the FrFT going from 0.6 up to 0.9 in order to compare their effects upon the spectral and quantitative resolutions. Four linear regression plots for each substance were obtained by measuring the MEXH-CWT-MOFrFT amplitudes in the application of the MEXH family to the modulus of the FrFT. This new combined powerful tool is validated by analyzing the artificial samples of the related drugs, and it is applied to the quality control of the commercial veterinary samples.
Resumo:
The problem of synthetic aperture radar interferometric phase noise reduction is addressed. A new technique based on discrete wavelet transforms is presented. This technique guarantees high resolution phase estimation without using phase image segmentation. Areas containing only noise are hardly processed. Tests with synthetic and real interferograms are reported.
Resumo:
The continuous wavelet transform is obtained as a maximumentropy solution of the corresponding inverse problem. It is well knownthat although a signal can be reconstructed from its wavelet transform,the expansion is not unique due to the redundancy of continuous wavelets.Hence, the inverse problem has no unique solution. If we want to recognizeone solution as "optimal", then an appropriate decision criterion hasto be adopted. We show here that the continuous wavelet transform is an"optimal" solution in a maximum entropy sense.
Resumo:
A discussion on the expression proposed in [1]–[3]for deconvolving the wideband density function is presented. Weprove here that such an expression reduces to be proportionalto the wideband correlation receiver output, or continuous wavelettransform of the received signal with respect to the transmittedone. Moreover, we show that the same result has been implicitlyassumed in [1], when the deconvolution equation is derived. Westress the fact that the analyzed approach is just the orthogonalprojection of the density function onto the image of the wavelettransform with respect to the transmitted signal. Consequently,the approach can be considered a good representation of thedensity function only under the prior knowledge that the densityfunction belongs to such a subspace. The choice of the transmittedsignal is thus crucial to this approach.
Resumo:
Multispectral images contain information from several spectral wavelengths and currently multispectral images are widely used in remote sensing and they are becoming more common in the field of computer vision and in industrial applications. Typically, one multispectral image in remote sensing may occupy hundreds of megabytes of disk space and several this kind of images may be received from a single measurement. This study considers the compression of multispectral images. The lossy compression is based on the wavelet transform and we compare the suitability of different waveletfilters for the compression. A method for selecting a wavelet filter for the compression and reconstruction of multispectral images is developed. The performance of the multidimensional wavelet transform based compression is compared to other compression methods like PCA, ICA, SPIHT, and DCT/JPEG. The quality of the compression and reconstruction is measured by quantitative measures like signal-to-noise ratio. In addition, we have developed a qualitative measure, which combines the information from the spatial and spectral dimensions of a multispectral image and which also accounts for the visual quality of the bands from the multispectral images.