942 resultados para Wave model
Resumo:
Ocean energy is a promising resource for renewable electricity generation that presents many advantages, such as being more predictable than wind energy, but also some disadvantages such as large and slow amplitude variations in the generated power. This paper presents a hardware-in-the-loop prototype that allows the study of the electric power profile generated by a wave power plant based on the oscillating water column (OWC) principle. In particular, it facilitates the development of new solutions to improve the intermittent profile of the power fed into the grid or the test of the OWC behavior when facing a voltage dip. Also, to obtain a more realistic model behavior, statistical models of real waves have been implemented.
Resumo:
Includes abstract.
Resumo:
"July 1982."
Resumo:
"April 1978."
Resumo:
A travelling-wave model of a semiconductor optical amplifier based non-linear loop mirror is developed to investigate the importance of travelling-wave effects and gain/phase dynamics in predicting device behaviour. A constant effective carrier recovery lifetime approximation is found to be reasonably accurate (±10%) within a wide range of control pulse energies. Based on this approximation, a heuristic model is developed for maximum computational efficiency. The models are applied to a particular configuration involving feedback.
Resumo:
Investigations of the optical response of subwavelength-structure arrays milled into thin metal films have revealed surprising phenomena, including reports of unexpectedly high transmission of light. Many studies have interpreted the optical coupling to the surface in terms of the resonant excitation of surface plasmon polaritons (SPPs), but other approaches involving composite diffraction of surface evanescent waves (CDEW) have also been proposed. Here we present a series of measurements on very simple one-dimensional subwavelength structures to test the key properties of the surface waves, and compare them to the CDEW and SPP models. We find that the optical response of the silver metal surface proceeds in two steps: a diffractive perturbation in the immediate vicinity (2–3 mu m) of the structure, followed by excitation of a persistent surface wave that propagates over tens of micrometres. The measured wavelength and phase of this persistent wave are significantly shifted from those expected for resonance excitation of a conventional SPP on a pure silver surface.
Resumo:
The ability to represent the transport and fate of an oil slick at the sea surface is a formidable task. By using an accurate numerical representation of oil evolution and movement in seawater, the possibility to asses and reduce the oil-spill pollution risk can be greatly improved. The blowing of the wind on the sea surface generates ocean waves, which give rise to transport of pollutants by wave-induced velocities that are known as Stokes’ Drift velocities. The Stokes’ Drift transport associated to a random gravity wave field is a function of the wave Energy Spectra that statistically fully describe it and that can be provided by a wave numerical model. Therefore, in order to perform an accurate numerical simulation of the oil motion in seawater, a coupling of the oil-spill model with a wave forecasting model is needed. In this Thesis work, the coupling of the MEDSLIK-II oil-spill numerical model with the SWAN wind-wave numerical model has been performed and tested. In order to improve the knowledge of the wind-wave model and its numerical performances, a preliminary sensitivity study to different SWAN model configuration has been carried out. The SWAN model results have been compared with the ISPRA directional buoys located at Venezia, Ancona and Monopoli and the best model settings have been detected. Then, high resolution currents provided by a relocatable model (SURF) have been used to force both the wave and the oil-spill models and its coupling with the SWAN model has been tested. The trajectories of four drifters have been simulated by using JONSWAP parametric spectra or SWAN directional-frequency energy output spectra and results have been compared with the real paths traveled by the drifters.
Resumo:
A fuzzy dynamic flood routing model (FDFRM) for natural channels is presented, wherein the flood wave can be approximated to a monoclinal wave. This study is based on modification of an earlier published work by the same authors, where the nature of the wave was of gravity type. Momentum equation of the dynamic wave model is replaced by a fuzzy rule based model, while retaining the continuity equation in its complete form. Hence, the FDFRM gets rid of the assumptions associated with the momentum equation. Also, it overcomes the necessity of calculating friction slope (S-f) in flood routing and hence the associated uncertainties are eliminated. The fuzzy rule based model is developed on an equation for wave velocity, which is obtained in terms of discontinuities in the gradient of flow parameters. The channel reach is divided into a number of approximately uniform sub-reaches. Training set required for development of the fuzzy rule based model for each sub-reach is obtained from discharge-area relationship at its mean section. For highly heterogeneous sub-reaches, optimized fuzzy rule based models are obtained by means of a neuro-fuzzy algorithm. For demonstration, the FDFRM is applied to flood routing problems in a fictitious channel with single uniform reach, in a fictitious channel with two uniform sub-reaches and also in a natural channel with a number of approximately uniform sub-reaches. It is observed that in cases of the fictitious channels, the FDFRM outputs match well with those of an implicit numerical model (INM), which solves the dynamic wave equations using an implicit numerical scheme. For the natural channel, the FDFRM Outputs are comparable to those of the HEC-RAS model.
Resumo:
Short elliptical chamber mufflers are used often in the modern day automotive exhaust systems. The acoustic analysis of such short chamber mufflers is facilitated by considering a transverse plane wave propagation model along the major axis up to the low frequency limit. The one dimensional differential equation governing the transverse plane wave propagation in such short chambers is solved using the segmentation approaches which are inherently numerical schemes, wherein the transfer matrix relating the upstream state variables to the downstream variables is obtained. Analytical solution of the transverse plane wave model used to analyze such short chambers has not been reported in the literature so far. This present work is thus an attempt to fill up this lacuna, whereby Frobenius solution of the differential equation governing the transverse plane wave propagation is obtained. By taking a sufficient number of terms of the infinite series, an approximate analytical solution so obtained shows good convergence up to about 1300 Hz and also covers most of the range of muffler dimensions used in practice. The transmission loss (TL) performance of the muffler configurations computed by this analytical approach agrees excellently with that computed by the Matrizant approach used earlier by the authors, thereby offering a faster and more elegant alternate method to analyze short elliptical muffler configurations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We detected the responses of summertime extreme wave heights (H-top10, average of the highest 10% of significant wave heights in June, July and August) to local climate variations in the East China Sea by applying an empirical orthogonal function analysis to Htop10 derived from the WAVEWATCH- III wave model driven by 6 hourly sea surface wind fields from ERA-40 reanalysis over the period 1958-2002. Decreases in H-top10 in the northern East China Sea ( Yellow Sea) correspond to attenuation of the East Asian Summer Monsoon, while increases in the south are primarily due to enhancement of tropical cyclone activities in the western North Pacific.
Resumo:
In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2(1972) 225; J. Geophys. REs. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.
Resumo:
The simulating wave nearshore (SWAN) wave model has been widely used in coastal areas, lakes and estuaries. However, we found a poor agreement between modeling results and measurements in analyzing the chosen four typical cases when we used the default parameters of the source function formulas of the SWAN to make wave simulation for the Bohai Sea. Also, it was found that at the same wind process the simulated results of two wind generation expressions (Komen, Janssen) demonstrated a large difference. Further study showed that the proportionality coefficient alpha in linear growth term of wave growth source function plays an unperceived role in the process of wave development. Based on experiments and analysis, we thought that the coefficient alpha should change rather than be a constant. Therefore, the coefficient alpha changing with the variation of friction velocity U (*) was introduced into the linear growth term of wave growth source function. Four weather processes were adopted to validate the improvement in the linear growth term. The results from the improved coefficient alpha agree much better with the measurements than those from the default constant coefficient alpha. Furthermore, the large differences of results between Komen wind generation expression and Janssen wind generation expression were eliminated. We also experimented with the four weather processes to test the new white-capping mechanisms based on the cumulative steepness method. It was found that the parameters of the new white-capping mechanisms are not suitable for the Bohai Sea, but Alkyon's white-capping mechanisms can be applicable to the Bohai Sea after amendments, demonstrating that this improvement of parameter alpha can improve the simulated results of the Bohai Sea.
Resumo:
Based on the second-order solutions obtained for the three-dimensional weakly nonlinear random waves propagating over a steady uniform current in finite water depth, the joint statistical distribution of the velocity and acceleration of the fluid particle in the current direction is derived using the characteristic function expansion method. From the joint distribution and the Morison equation, the theoretical distributions of drag forces, inertia forces and total random forces caused by waves propagating over a steady uniform current are determined. The distribution of inertia forces is Gaussian as that derived using the linear wave model, whereas the distributions of drag forces and total random forces deviate slightly from those derived utilizing the linear wave model. The distributions presented can be determined by the wave number spectrum of ocean waves, current speed and the second order wave-wave and wave-current interactions. As an illustrative example, for fully developed deep ocean waves, the parameters appeared in the distributions near still water level are calculated for various wind speeds and current speeds by using Donelan-Pierson-Banner spectrum and the effects of the current and the nonlinearity of ocean waves on the distribution are studied. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Earlier studies have indicated that the gross nearshore wave energy resource is significantly smaller than the gross offshore wave energy resource implying that the deployment of wave energy converters in the nearshore is unlikely to be economic. However, it is argued that the gross wave energy resource is not an appropriate measure for determining the productivity of a wave farm and an alternative measure, the exploitable wave energy resource, is proposed. Calculation of a site's potential using the exploitable wave energy resource is considered superior because it accounts for the directional distribution of the incident waves and the wave energy plant rating that limits the power capture in highly energetic sea-states. A third-generation spectral wave model is used to model the wave transformation from deep water to a nearshore site in a water depth of 10 m. It is shown that energy losses result in a reduction of less than 10% of the net incident wave power. Annual wave data for the North Atlantic coast of Scotland is analysed and indicates that whilst the gross wave energy resource has reduced significantly by the 10 m depth contour, the exploitable wave energy resource is reduced by 7 and 22% for the two sites analysed. This limited reduction in exploitable wave energy resource means that for many exposed coasts, nearshore sites offer similar potential for exploitation of the wave energy resource as offshore sites.