984 resultados para Water-movement
Resumo:
Although it has been known for decades that the tight junctions of fluid-transporting epithelia are leaky to ions, it has not been possible to determine directly whether significant transjunctional water movement also occurs. An optical microscopic technique was developed for the direct visualization of the flow velocity profiles within the lateral intercellular spaces of a fluid-absorptive, cultured renal epithelium (MDCK) and used to determine the velocity of the fluid flow across the tight junction. The flow velocity within the lateral intercellular spaces fell to near zero adjacent to the tight junction, showing that significant transjunctional flow did not occur, even when transepithelial fluid movement was augmented by imposition of osmotic gradients.
Resumo:
In the Mekong region, most paddies in rainfed lowland rice (Oryza sativa L.) lie in a sequence on gentle sloping land, and grain yield (GY) often depends on the toposequence position. There is, however, lack of information on toposequential effects on field water supply in rainfed lowland rice and how that influences GY. A total of eight field experiments were carried out on sandy, coarse-textured soils in Southern Laos (Champassak Province and Savannakhet Province) over three wet seasons (2000-2002). Components of the water balance, including downward and lateral water movement (D and L, respectively), were quantified at three different positions along toposequences (top, middle and bottom). GY, days-to-flower (DTF) and rainfall were measured, and the water productivity (WP) was determined. In most experiments, standing water disappeared first in the top position and gradually in lower positions. This was associated with the observation that when there was standing water in the field, the higher position had larger D in both the provinces and also larger L in Champassak Province. However, in one experiment, water loss appeared later in the higher position, as the result of lower L, apparently due to some water inputs other than rainfall occurring at this position. Despite larger D plus L at the top position, seasonal sum of D and L were not much affected by the toposequence position, as the daily rate of D plus L became minimal when the standing water was lost earlier in the top position. Lower GY was associated with earlier disappearance of standing water from the field. Relatively low GY was expected in the top toposequence position. This was clearly shown in the toposequence of Phonthong, Champassak Province, as the timing of standing water disappearance relative to flowering was earlier in the top position. Variation in GY across the toposequence positions was coupled with the WP variation, and both GY and WP tended to decline with increased DTF. Therefore, variation in productivity of rainfed lowland rice across toposequence positions depends mainly on the field water status around flowering time. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Atrazine dissplacement was studied in a soll profile as function of water movement and time after herbicide application, taldng into account possible influences of preferential flow on keaching. The experiment consisted of two 7 x 7 m plots of a dark red latosol (Kanduidalfic Eutrudox), located at Pirecicaba, SP, Brazil (22o43'S and 47o25'W), 250 km inside continent, at an altitude of 580 m. One plot was previously treated with 1,000 kg/ha of lime, in order to increase saturation to 88%, and 500 kg/ha of gypsum. Each plot was instrumented with tensiometers, neutron probe acess tubes and soil solution extractors, in order to monitor water and atrazine flows. Atrazine was applied at the high rate of 6 kg/ha of active principllle. Results showed intensiive leaching of atrazine in the whole soil profile, up to the instrumented depth of 150 cm, alredy at the first sampling, seven days after herbicide application. The limed plot showed much higher atrazine leachinng losses than the other plot. The atrazine adsorption capacity of the soll is very low, its maximum value being of the order of 10%, for the 0-15 cm surface layer.
Resumo:
Considering the importance of water content for the conservation and storage of seeds, and the involvement of soluble carbohydrates and lipids for embryo development, a comparative study was carried out among the seeds of Inga vera (ingá), Eugenia uniflora (pitanga), both classified as recalcitrant, and Caesalpinia echinata (brazilwood) and Erythrina speciosa (mulungu), considered as orthodox seeds. Low concentrations of cyclitols (0.3-0.5%), raffinose family oligosaccharides (ca. 0.05%) and unsaturated fatty acids (0-19%) were found in the seeds of ingá and pitanga, while larger amounts of cyclitols (2-3%) and raffinose (4.6-13%) were found in brazilwood and mulungu, respectively. These results, in addition to higher proportions of unsaturated fatty acids (53-71%) in orthodox seeds, suggested that sugars and lipids played important role in water movement, protecting the embryo cell membranes against injuries during dehydration.
Resumo:
Furosemide, a potent diuretic, affects ion and water movement across the respiratory epithelium. However, the effects of furosemide, as clinically used, on mucociliary clearance, a critical respiratory defense mechanism, are still lacking in humans. Fourteen young healthy subjects were assigned to three random interventions, spaced one-week apart: no intervention (control), oral furosemide (40 mg), and furosemide + oral volume replacement (F + R). Nasal mucociliary clearance was assessed by saccharine test (STT), and mucus properties were in vitro evaluated by means of contact angle and transportability by sneeze. Urine output and osmolality were also evaluated. Urine output increased and reduced urine osmolality in furosemide and F + R compared to the control condition. STT remained stable in the control group. In contrast, STT increased significantly (40%) after furosemide and F + R. There were no changes in vitro mucus properties in all groups. In conclusion, furosemide prolongs STT in healthy young subjects. This effect is not prevented by fluid replacement, suggesting a direct effect of furosemide on the respiratory epithelium. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Nielsen and Perrochet [Adv. Water Resour. 23 (2000) 503] presented experimental data for cyclic water movement in the vadose zone above an oscillating watertable. The response of the watertable to cyclic forcing was characterised by the ratios of the forcing head to watertable amplitudes and their associated phase lag. They found that their non-hysteretic Richards' equation model failed to represent the observed behaviour of these parameters. This paper explores the effect on the simulated capillary fringe dynamics (in terms of these parameters) of including varying degrees of hysteresis in the moisture retention curve used in a numerical model of their experiment. It is clear that hysteresis can indeed account for observed discrepancies between simulation and experiment and that the effect of hysteresis varies with the frequency of oscillation. The use of a single-valued mean retention curve, as advocated by some authors, fails to provide a match between the simulated and observed behaviour of the Nielsen and Perrochet parameters, but is shown to be adequate for predicting time-averaged soil moisture profiles. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
High concentrations of ammonium ( up to 270 kg N/ha) have been observed in a Vertisol soil below 1 m depth near Warra in south-east Queensland. This study examined the possibility that increased water movement into the subsoil after the removal of native vegetation, and a subsequent increase in periods of waterlogging, could have triggered nitrate ammonification and be responsible for the production of ammonium. Two incubation experiments were conducted to test this hypothesis. The first involved the incubation of repacked cores that had been amended with 30 mg N/kg of 5 atom% N-15 nitrate under low oxygen conditions for a period of 360 days. Over this time period the N-15 enrichment of the exchangeable ammonium fraction was monitored in order to detect any reduction of nitrate to ammonium. The second experiment involved the incubation of soil amended with 30 mg N/ kg of 5 atom% N-15 nitrate under waterlogged and low oxygen conditions for 75 days. During this period the redox potential of the soil was monitored using a field test to determine if reducing conditions would develop in this soil over a period of waterlogging, combined with the monitoring of any nitrate reduction to ammonium. The results of these experiments indicated that a small amount of nitrate ammonification (< 0.1 mg N/ kg) could be observed in the Warra subsoil, but that unless the rate of reduction were to significantly increase with time, this could not account for the accumulation of ammonium observed in the field. The environmental conditions that would make either dissimilatory or abiotic nitrate ammonification favourable were not observed to develop. Consequently, it has been concluded that the observed nitrate ammonification occurred via an assimilatory pathway. Due to the low rate of microbial activity in this subsoil it is considered unlikely that this process was responsible for the subsoil ammonium accumulation at Warra.
Resumo:
The effects of various fallow management systems and cropping intensities on water infiltration were measured on an Alfisol at Ibadan in southwestern Nigeria. The objective was to determine the influence of the land use systems (a combination of crop-fallow sequences and intercropping types) on soil hydraulic properties obtained by disc permeameter and double-ring infiltration measurements. The experiment was established in 1989 as a split-plot design with four replications. The main plots were natural fallow, planted Pueraria phaseoloides and planted Leucaena leucocephala. The subplots were 1 year of maize/cassava intercrop followed by 3-year fallow (25% cropping intensity), or 2-year fallow (33% cropping intensity), or 1-year fallow (50% cropping intensity), or no fallow period (100% cropping intensity). Water infiltration rates and sorptivities were measured under saturated and unsaturated flow. Irrespective of land use, infiltration rates at the soil surface (121-324 cm h(-1)) were greater than those measured at 30 cm depth (55-144 cm h(-1)). This indicated that fewer large pores were present below 30 cm depth compared with 0-30 cm, depth. Despite some temporal variation, sorptivities with the highest mean value of 93.5 cm h(-1/2) increased as the cropping intensity decreased, suggesting a more continuous macropore system under less intensive land use systems. This was most likely due to continuous biopores created by perennial vegetation under long fallow systems. Intercropped maize and cassava yields also increased as cropping intensity decreased. The weak relationship between crop yields and hydraulic conductivity/infiltration rates suggests that the rates were not limiting.
Resumo:
The presence of entrapped air in pressurized hydraulic systems is considered a critical condition for the infrastructure security, due to the transient pressure enhancement related with its dynamic behaviour, similar to non-linear spring action. A mathematical model for the assessment of hydraulic transients resulting from rapid pressurizations, under referred condition is presented. Water movement was modeled through the elastic column theory considering a moving liquid boundary and the entrapped air pocket as lumped gas mass, where the acoustic effects are negligible. The method of characteristics was used to obtain the numerical solution of the liquid flow. The resulting model is applied to an experimental set-up having entrapped air in the top of a vertical pipe section and the numerical results are analyzed.
Resumo:
The chemical features of the ground water in the Lower Tagus Cenozoic deposits are strongly influenced by lithology, by the velocity and direction of the water movement as well as by the localization of the recharge and discharge zones. The mineralization varies between 80 and 900 mg/l. It is minimal in the recharge zones and in the Pliocene sand and maximum in the Miocene carbonated and along the alluvial valley. Mineralization always reflects the time of permanence, the temperature and the pressure. The natural process of water mineralization is disturbed in agricultural areas because the saline concentration of the infiltration water exceeds that of the infiltrated rainwater. In the discharge zones, the rise of the more mineralized, some times thermal deep waters related to tectonic accidents give rise to anomalies in the distribution of the aquiferous system mineralization model. The diversity of the hydrochemical facies of the ground water may be related to several factors whose identification is some times difficult.
Resumo:
Dissertação de mestrado em Geociências (área de especialização em Recursos Geológicos)
Resumo:
Water movement in unsaturated soils gives rise to measurable electrical potential differences that are related to the flow direction and volumetric fluxes, as well as to the soil properties themselves. Laboratory and field data suggest that these so-called streaming potentials may be several orders of magnitudes larger than theoretical predictions that only consider the influence of the relative permeability and electrical conductivity on the self potential (SP) data. Recent work has improved predictions somewhat by considering how the volumetric excess charge in the pore space scales with the inverse of water saturation. We present a new theoretical approach that uses the flux-averaged excess charge, not the volumetric excess charge, to predict streaming potentials. We present relationships for how this effective excess charge varies with water saturation for typical soil properties using either the water retention or the relative permeability function. We find large differences between soil types and the predictions based on the relative permeability function display the best agreement with field data. The new relationships better explain laboratory data than previous work and allow us to predict the recorded magnitudes of the streaming potentials following a rainfall event in sandy loam, whereas previous models predict values that are three orders of magnitude too small. We suggest that the strong signals in unsaturated media can be used to gain information about fluxes (including very small ones related to film flow), but also to constrain the relative permeability function, the water retention curve, and the relative electrical conductivity function.
Resumo:
The transmembrane water movements during cellular processes and their relationship to ionic channel activity remain largely unknown. As an example, in epithelial cells it was proposed that the movement of water could be directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) protein activity through a cAMP-stimulated aqueous pore, or be dependent on aquaporin. Here, we used digital holographic microscopy (DHM) an interferometric technique to quantify in situ the transmembrane water fluxes during the activity of the epithelial chloride channel, CFTR, measured by patch-clamp and iodide efflux techniques. We showed that the water transport measured by DHM is fully inhibited by the selective CFTR blocker CFTRinh172 and is absent in cells lacking CFTR. Of note, in cells expressing the mutated version of CFTR (F508del-CFTR), which mimics the most common genetic alteration encountered in cystic fibrosis, we also show that the water movement is profoundly altered but restored by pharmacological manipulation of F508del-CFTR-defective trafficking. Importantly, whereas activation of this endogenous water channel required a cAMP-dependent stimulation of CFTR, activation of CFTR or F508del-CFTR by two cAMP-independent CFTR activators, genistein and MPB91, failed to trigger water movements. Finally, using a specific small-interfering RNA against the endogenous aquaporin AQP3, the water transport accompanying CFTR activity decreased. We conclude that water fluxes accompanying CFTR activity are linked to AQP3 but not to a cAMP-stimulated aqueous pore in the CFTR protein.
Resumo:
In order to classify mosquito immature stage habitats, samples were taken in 42 localities of Córdoba Province, Argentina, representing the phytogeographic regions of Chaco, Espinal and Pampa. Immature stage habitats were described and classified according to the following criteria: natural or artificial; size; location related to light and neighboring houses; vegetation; water: permanence, movement, turbidity and pH. Four groups of species were associated based on the habitat similarity by means of cluster analysis: Aedes albifasciatus, Culex saltanensis, Cx. mollis, Cx. brethesi, Psorophora ciliata, Anopheles albitarsis, and Uranotaenia lowii (Group A); Cx. acharistus, Cx. quinquefasciatus, Cx. bidens, Cx. dolosus, Cx. maxi and Cx. apicinus (Group B); Cx. coronator, Cx. chidesteri, Mansonia titillans and Ps. ferox (Group C); Ae. fluviatilis and Ae. milleri (Group D). The principal component analysis (ordination method) pointed out that the different types of habitats, their nature (natural or artificial), plant species, water movement and depth are the main characters explaining the observed variation among the mosquito species. The distribution of mosquito species by phytogeographic region did not affect the species groups, since species belonging to different groups were collected in the same region.
Resumo:
Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy could be suspected.