954 resultados para Water--Pollution--Environmental aspects--South Carolina
Resumo:
The “Compass E-Newsletter” is published quarterly by the South Carolina Department of Health and Environmental Control and is compiled by the Office of Solid Waste Reduction and Recycling to provide environmental information from the agency.
Resumo:
The “Compass E-Newsletter” is published quarterly by the South Carolina Department of Health and Environmental Control and is compiled by the Office of Solid Waste Reduction and Recycling to provide environmental information from the agency.
Resumo:
The “Compass E-Newsletter” is published quarterly by the South Carolina Department of Health and Environmental Control and is compiled by the Office of Solid Waste Reduction and Recycling to provide environmental information from the agency.
Resumo:
The “Compass E-Newsletter” is published quarterly by the South Carolina Department of Health and Environmental Control and is compiled by the Office of Solid Waste Reduction and Recycling to provide environmental information from the agency.
Resumo:
The “Compass E-Newsletter” is published quarterly by the South Carolina Department of Health and Environmental Control and is compiled by the Office of Solid Waste Reduction and Recycling to provide environmental information from the agency.
Resumo:
The “Compass E-Newsletter” is published quarterly by the South Carolina Department of Health and Environmental Control and is compiled by the Office of Solid Waste Reduction and Recycling to provide environmental information from the agency.
Resumo:
The “Compass E-Newsletter” is published quarterly by the South Carolina Department of Health and Environmental Control and is compiled by the Office of Solid Waste Reduction and Recycling to provide environmental information from the agency.
Resumo:
The spatial and temporal occurrence of Atlantic bottlenose dolphins (Tursiops truncatus) in the coastal and estuarine waters near Charleston, SC were evaluated. Sighting and photographic data from photo-identification (ID), remote biopsy, capture-release and radio-tracking studies, conducted from 1994 through 2003, were analyzed in order to further delineate residence patterns of Charleston area bottlenose dolphins. Data from 250 photo-ID, 106 remote biopsy, 15 capture-release and 83 radio-tracking surveys were collected in the Stono River Estuary (n = 247), Charleston Harbor (n = 86), North Edisto River (n = 54), Intracoastal Waterway (n = 26) and the coastal waters north and south of Charleston Harbor (n = 41). Coverage for all survey types was spatially and temporally variable, and in the case of biopsy, capture-release and radio-tracking surveys, data analyzed in this report were collected incidental to other research. Eight-hundred and thirty-nine individuals were photographically identified during the study period. One-hundred and fifteen (13.7%) of the 839 photographically identified individuals were sighted between 11-40 times, evidence of consistent occurrence in the Charleston area (i.e., site fidelity). Adjusted sighting proportions (ASP), which reflect an individual’s sighting frequency in a subarea relative to other subareas after adjusting for survey effort, were analyzed in order to evaluate dolphin spatial occurrence. Forty-three percent (n = 139) of dolphins that qualified for ASP analyses exhibited a strong subarea affiliation while the remaining 57% (n = 187) showed no strong subarea preference. Group size data were derived from field estimates of 2,342 dolphin groups encountered in the five Charleston subareas. Group size appeared positively correlated with degree of “openness” of the body of water where dolphins were encountered; and for sightings along the coast, group size was larger during summer months. This study provides valuable information on the complex nature of bottlenose dolphin spatial and temporal occurrence near Charleston, SC. In addition, it helps us to better understand the stock structure of dolphins along the Atlantic seaboard.
Resumo:
Grass shrimp, Palaemonetes pugio, are a common inhabitant of US East and Gulf coast salt marshes and are a food source for recreationally and economically important fish and crustacean species. Due to the relationship of grass shrimp with their ecosystem, any significant changes in grass shrimp population may have the potential to affect the estuarine system. Land use is a crucial concern in coastal areas where increasing development impacts the surrounding estuaries and salt marshes and has made grass shrimp population studies a logical choice to investigate urbanization effects. Any impact on tidal creeks will be an impact on grass shrimp populations and their associated micro-environment whether predator, prey or parasitic symbiont. Anthropogenic stressors introduced into the grass shrimp ecosystem may even change the intensity of infections from parasitic symbionts. An ectoparasite found on P. pugio is the bopyrid isopod Probopyrus pandalicola. Little is known about factors that may affect the occurrence of this isopod in grass shrimp populations. The goal was to analyze the prevalence of P. pandalicola in grass shrimp in relation to land use classifications, water quality parameters, and grass shrimp population metrics. Eight tidal creeks in coastal South Carolina were sampled monthly over a three year period. The occurrence of P. pandalicola ranged from 1.2% to 5.7%. Analysis indicated that greater percent water and marsh coverage resulted in a higher incidence of bopyrid occurrence. Analysis also indicated that higher bopyrid incidence occurred in creeks with higher salinity, temperature, and pH but lower dissolved oxygen. The land use characteristics found to limit bopyrid incidence were limiting to grass shrimp (definitive host) populations and probably copepod (intermediate host) populations as well.
Resumo:
A simple static model incorporating a variety of environmental pollution is developed. An autarky model shows that a developing country regulates fewer types of pollution by income-induced environmental policy. As income grows, the types of regulated pollution increase and also introduced regulations become tougher.Then the model incorporates international trade between a developed country and a developing country. The model gives a new interpretation for the pollution haven hypothesis. Some types of pollution abated with inefficient technology are emitted more in a developing country but other types necessarily increase in a developed country in order to meet the trade balance.
Resumo:
Environmental degradation from point and non-point source pollution in the past ten years has made it increasingly clear that threats to aquatic resources cannot adequately be addressed without a more integrated watershed approach to the management. Through comprehensive, qualitative interviews of experts in the watershed approach in South Carolina, recommendations will be made to improve this holistic process. Conducting interviews to compile institutional knowledge on the incentives and barriers from professionals working within the watershed approach will show how managing the natural resources in South Carolina could be more effective and efficient. By gathering experiences of lessons learned, best approach techniques, and suggestions for future watershed planning, several recommendations were made to further the use of the watershed approach in South Carolina.
Resumo:
Prepared for Office of Research and Development, U.S. Environmental Protection Agency under contract 68-01-0729, program element 1H1093.
Resumo:
Bibliography: p. 23-24.
Resumo:
The focus of this article is on the cost-effectiveness of mitigation strategies to reduce pollution loads and improve water quality in South-East Queensland. Scenarios were developed about the types of catchment interventions that could be considered, and the resulting changes in water quality indicators that may result. Once these catchment scenarios were modelled, the range of expected outcomes was assessed and the costs of mitigation interventions were estimated. Strategies considered include point and non-point source interventions. Predicted reductions in pollution levels were calculated for each action based on the expected population growth. The cost of the interventions included the full investment and annual running costs as well as planned public investment by the state agencies. Cost-effectiveness of strategies is likely to vary according to whether suspended sediments, nitrogen or phosphorus loads are being targeted.
Resumo:
The South Carolina Coastal Information Network (SCCIN) emerged as a result of a number of coastal outreach institutions working in partnership to enhance coordination of the coastal community outreach efforts in South Carolina. This organized effort, led by the S.C. Sea Grant Consortium and its Extension Program, includes partners from federal and state agencies, regional government agencies, and private organizations seeking to coordinate and/or jointly deliver outreach programs that target coastal community constituents. The Network was officially formed in 2006 with the original intention of fostering intra-and inter- agency communication, coordination, and cooperation. Network partners include the S.C. Sea Grant Consortium, S.C. Department of Health and Environmental Control – Office of Ocean and Coastal Resource Management and Bureau of Water, S.C. Department of Natural Resources – ACE Basin National Estuarine Research Reserve, North Inlet-Winyah Bay National Estuarine Research Reserve, Clemson University Cooperative Extension Service and Carolina Clear, Berkeley-Charleston-Dorchester Council of Governments, Waccamaw Regional Council of Governments, Urban Land Institute of South Carolina, S.C. Department of Archives and History, the National Oceanic and Atmospheric Administration – Coastal Services Center and Hollings Marine Laboratory, Michaux Conservancy, Ashley-Cooper Stormwater Education Consortium, the Coastal Waccamaw Stormwater Education Consortium, the S.C. Chapter of the U.S. Green Building Council, and the Lowcountry Council of Governments. (PDF contains 3 pages)