962 resultados para Water scarcity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water is now considered the most important but vulnerable resource in the Mediterranean region. Nevertheless, irrigation expanded fast in the region (e.g. South Portugal and Spain) to mitigate environmental stress and to guarantee stable grape yield and quality. Sustainable wine production depends on sustainable water use in the wine’s supply chain, from the vine to the bottle. Better understanding of grapevine stress physiology (e.g. water relations, temperature regulation, water use efficiency), more robust crop monitoring/phenotyping and implementation of best water management practices will help to mitigate climate effects and will enable significant water savings in the vineyard and winery. In this paper, we focused on the major vulnerabilities and opportunities of South European Mediterranean viticulture (e.g. in Portugal and Spain) and present a multi-level strategy (from plant to the consumer) to overcome region’s weaknesses and support strategies for adaptation to water scarcity, promote sustainable water use and minimize the environmental impact of the sector.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As a result of rapid urbanisation, population growth, changes in lifestyle, pollution and the impacts of climate change, water provision has become a critical challenge for planners and policy-makers. In the wake of increasingly difficult water provision and drought, the notion that freshwater is a finite and vulnerable resource is increasingly being realised. Many city administrations around the world are struggling to provide water security for their residents to maintain lifestyle and economic growth. This chapter reviews the global challenge of providing freshwater to sustain lifestyles and economic growth, and the contributing challenges of climate change, urbanisation, population growth and problems in rainfall distribution. The chapter proceeds to evaluate major alternatives to current water sources such as conservation, recycling and reclamation, and desalination. Integrated water resource management is briefly looked at to explore its role in complementing water provision. A comparative study on alternative resources is undertaken to evaluate their strengths, weaknesses, opportunities and constraints, and the results are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Poor mine water management can lead to corporate, environmental and social risks. These risks become more pronounced as mining operations move into areas of water scarcity and/or increase climatic variability while also managing increased demand, lower ore grades and increased strip ratios. Therefore, it is vital that mine sites better understand these risks in order to implement management practices to address them. Systems models provide an effective approach to understand complex networks, particularly across multiple scales. Previous work has represented mine water interactions using systems model on a mine site scale. Here, we expand on that work by present an integrated tool that uses a systems modeling approach to represent mine water interactions on a site and regional scale and then analyses the risks associated with events stemming from those interactions. A case study is presented to represent three indicative corporate, environmental and social risks associated with a mine site that exists in a water scarce region. The tool is generic and flexible, and can be used in many scenarios to provide significant potential utility to the mining industry.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mining industry faces three long term strategic risks in relation to its water and energy use: 1) securing enough water and energy to meet increased production; 2) reducing water use, energy consumption and emissions due to social, environmental and economic pressures; and 3) understanding the links between water and energy, so that an improvement in one area does not create an adverse effect in another. This project helps the industry analyse these risks by creating a hierarchical systems model (HSM) that represents the water and energy interactions on a sub-site, site and regional scales; which is coupled with a flexible risk framework. The HSM consists of: components that represent sources of water and energy; activities that use water and energy and off-site destinations of water and produced emissions. It can also represent more complex components on a site, with inbuilt examples including tailings dams and water treatment plants. The HSM also allows multiple sites and other infrastructure to be connected together to explore regional water and energy interactions. By representing water and energy as a single interconnected system the HSM can explore tradeoffs and synergies. For example, on a synthetic case study, which represents a typical site, simulations suggested that while a synergy in terms of water use and energy use could be made when chemical additives were used to enhance dust suppression, there were trade-offs when either thickened tailings or dry processing were used. On a regional scale, the HSM was used to simulate various scenarios, including: mines only withdrawing water when needed; achieving economics-of-scale through use of a single centralised treatment plant rather than smaller decentralised treatment plants; and capturing of fugitive emissions for energy generation. The HSM also includes an integrated risk framework for interpreting model output, so that onsite and off-site impacts of various water and energy management strategies can be compared in a managerial context. The case studies in this report explored company, social and environmental risks for scenarios of regional water scarcity, unregulated saline discharge, and the use of plantation forestry to offset carbon emissions. The HSM was able to represent the non-linear causal relationship at the regional scale, such as the forestry scheme offsetting a small percentage of carbon emissions but causing severe regional water shortages. The HSM software developed in this project will be released as an open source tool to allow industry personnel to easily and inexpensively quantify and explore the links between water use, energy use, and carbon emissions. The tool can be easily adapted to represent specific sites or regions. Case studies conducted in this project highlighted the potential complexity of these links between water, energy, and carbon emissions, as well as the significance of the cumulative effects of these links over time. A deeper understanding of these links is vital for the mining industry in order to progress to more sustainable operations, and the HSM provides an accessible, robust framework for investigating these links.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Problem of water scarcity has been increasingly severe in China. Though industrial sectors play important role for the rapid economic growth, and they consumes water and discharge wastewater. The purpose of this study is to examine the efficiency of water use and wastewater discharge in comparison with those of other inputs and production output in Chinese industry. Measuring efficiency of each input and output factor from 2002 to 2008, we find the average inefficiencies of industrial water use and industrial wastewater discharge are higher than those of capital, labor, and production output in China. In addition, the productivity levels to save water in the water shortage areas are not higher compared to the others. The water use inefficiency has a high dispersion especially in the regions where the amounts of water resources per capita is less than 3000 cubic meter.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent years, both developing and industrialised societies have experienced riots and civil unrest over the corporate exploitation of fresh water. Water conflicts increase as water scarcity rises and the unsustainable use of fresh water will continue to have profound implications for sustainable development and the realisation of human rights. Rather than states adopting more costly water conservation strategies or implementing efficient water technologies, corporations are exploiting natural resources in what has been described as the “privatization of water”. By using legal doctrines, states and corporations construct fresh water sources as something that can be owned or leased. For some regions, the privatization of water has enabled corporations and corrupt states to exploit a fundamental human right. Arguing that such matters are of relevance to criminology, which should be concerned with fundamental environmental and human rights, this article adopts a green criminological perspective and draws upon Treadmill of Production theory.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Population growth and rapid urbanization lead to considerable stress on already depleting water resources. A great challenge for water authorities of urban cities is to supply adequate and reliable safe water to all consumers. In most of the developing countries water scarcity and high demands have led the water authorities to resort to intermittent supplies. Surface and groundwater are the major sources of supply in urban cities. The direct consequences of intermittent supplies and poor sanitation practices are several incidences of water borne diseases posing public health risk. In order to minimize the supply-demand gap and to assure good quality of water, new techniques or models can be helpful to manage the water distribution systems (WDS) in a better way. In the present paper, a review is carried out on the existing urban water supply management methodologies with a way forward for the proper management of the water supply systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Drinking water scarcity is a major issue that needs to be addressed seriously. Water needs to be purified from organic pollutants and bacterial contamination. In this study, sunlight driven photocatalysis for the degradation of dyes and bacterial inactivation has been conducted over TiO2 nanoparticles (CST) and TiO2 nanobelts (CSTNB). TiO2 nanoparticles were synthesized by a solution combustion process using ascorbic acid as a fuel. Acid etched TiO2 nanobelts (CSTNB) were synthesized using combustion synthesized TiO2 as a novel precursor. The mechanism of formation of TiO2 nanobelts was hypothesized. The antibacterial activity of combustion synthesized TiO2 and acid etched TiO2 nanobelts were evaluated against Escherichia coli and compared against commercial TiO2. Various characterization studies like X-ray diffraction analysis, BET surface area analysis, diffused reflectance measurements were performed. Microscopic structures and high resolution images were analyzed using scanning electron microscopy, transmission electron microscopy. The extent of photo-stability and reusability of the catalyst was evaluated by conducting repeated cycles of photo degradation experiments and was compared to the commercial grade TiO2. The reactive radical species responsible for high photocatalytic and antibacterial activity has been determined by performing multiple scavenger reactions. The excellent charge transfer mechanism, high generation of hydroxyl and hole radicals resulted in enhanced photocatalytic activity of the acid etched TiO2 nanobelts compared to commercial TiO2 and nanobelts made from commercial TiO2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Through an examination of global climate change models combined with hydrological data on deteriorating water quality in the Middle East and North Africa (MENA), we elucidate the ways in which the MENA countries are vulnerable to climate-induced impacts on water resources. Adaptive governance strategies, however, remain a low priority for political leaderships in the MENA region. To date, most MENA governments have concentrated the bulk of their resources on large-scale supply side projects such as desalination, dam construction, inter-basin water transfers, tapping fossil groundwater aquifers, and importing virtual water. Because managing water demand, improving the efficiency of water use, and promoting conservation will be key ingredients in responding to climate-induced impacts on the water sector, we analyze the political, economic, and institutional drivers that have shaped governance responses. While the scholarly literature emphasizes the importance of social capital to adaptive governance, we find that many political leaders and water experts in the MENA rarely engage societal actors in considering water risks. We conclude that the key capacities for adaptive governance to water scarcity in MENA are underdeveloped. © 2010 Springer Science+Business Media B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Due to increasing water scarcity, accelerating industrialization and urbanization, efficiency of irrigation water use in Northern China needs urgent improvement. Based on a sample of 347 wheat growers in the Guanzhong Plain, this paper simultaneously estimates a production function, and its corresponding first-order conditions for cost minimization, to analyze efficiency of irrigation water use. The main findings are that average technical, allocative, and overall economic efficiency are 0.35, 0.86 and 0.80, respectively. In a second stage analysis, we find that farmers’ perception of water scarcity, water price and irrigation infrastructure increase irrigation water allocative efficiency, while land fragmentation decreases it. We also show that farmers’ income loss due to higher water prices can be offset by increasing irrigation water use efficiency.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we compare conceptualising single factor technical and allocative efficiency as indicators of a single latent variable, or as separate observed variables. In the former case, the impacts on both efficiency types are analysed by means of structural equation modeling (SEM), in the latter by seemingly unrelated regression (SUR). We compare estimation results of the two approaches based on a dataset on single factor irrigation water use efficiency obtained from a survey of 360 farmers in the Guanzhong Plain, China. The main methodological findings are that SEM allows identification of the most important dimension of irrigation water efficiency (technical efficiency) via comparison of their factor scores and reliability. Moreover, it reduces multicollinearity and attenuation bias. It thus is preferable to SUR. The SEM estimates show that perception of water scarcity is the most important positive determinant of both types of efficiency, followed by irrigation infrastructure, income and water price. Furthermore, there is a strong negative reverse effect from efficiency on perception.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article analyses adoption of farm-based irrigation water saving techniques, based on a cross-sectional data set of 357 farmers in the Guanzhong Plain, China. Approximately 83% of the farmers use at least one farm-based water-saving technique. However, the traditional, inefficient techniques border and furrow irrigation are still prevalent whereas the use of advanced, more efficient techniques is still rather rare. We develop and estimate an adoption model consisting of two stages: awareness of water scarcity and intensity of adoption. We find that awareness of water scarcity and financial status enhance adoption of more advanced techniques whereas access to better community-based irrigation infrastructure discourages it. We furthermore find both community-based irrigation infrastructure and farm-based irrigation water-saving techniques have mitigating effects on production risk. From the results it follows that adoption can be stimulated via financial support and via extension aimed at enhancing awareness of water scarcity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study was aim to describe the indigenous knowledge of farmers at Nagari Padang laweh Malalo (NPLM) and their adaptability to climate change. Not only the water scarcity is feared, but climate change is also affecting their food security. Local food security can be achieved if biodiversity in their surrounding area is suitable to the local needs. The study was conducted by using Participatory Rural Appraisal (PRA) such as observation and discussion. The combination of in depth interview, life history, semi structure questionnaire, pictures, mapping and expert interviews was implemented. Data was analyzed by using MAXQDA 10 and F4 audio analysis software. The result shows awareness of the people and scarcity of water conditions has allowed the people of NPLM to face this challenge with wisdom. Aia adat (water resources controlled and regulate by custom) is one of their strategies to distribute the water. The general rule is that irrigation will flow from 6 pm – 6 am regularly to all farm land under supervision of kapalo banda. When rains occur, water resources can be used during the day without special supervision. They were used traditional knowledge to manage water resources for their land and daily usage. This study may be helpful for researcher and other farmers in different region to learn encounter water scarcity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water scarcity and food insecurity are pervasive issues in the developing world and are also intrinsically linked to one another. Through the connection of the water cycle and the carbon cycle this study illustrates that synergistic benefits can be realized by small scale farmers through the implementation of waste water irrigated agroforestry. The WaNuLCAS model is employed using La Huerta agroforestry site in Texcoco, South Central Mexico, as the basis for parameterization. The results of model simulations depicting scenarios of water scarcity and waste water irrigation clearly show that the addition of waste water greatly increases the agroforestry system’s generation of crop yields, above- and below-ground biomass, soil organic matter and carbon storage potential. This increase in carbon sequestration by the system translates into better local food security, diversified household income through payments for ecosystem services and contributes to the mitigation of global climate change.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The human right to water is nowadays more broadly recognised, mainly due to the essential societal function that this resource plays; likewise, because of the present water scarcity is generating conflicts between its different uses. Thus, this right aims at protecting human beings by guaranteeing access to clean water that is essential to satisfy vital human needs. Similarly, access to clean water is an important element to guarantee other rights including the right to life and health. The recognition of the right to water is mainly achieved in two ways: as a new and independent right and as a subordinate or derivative right. Concerning the latter, the right to water can emanate from civil and political rights, such as the right to life; or can be derived from economic, social and cultural rights, including the right to health, the right to an adequate standard of living, and the right to housing. This contribution explores the position of the Inter-American Court of Human Rights regarding the right to water, and analyses whether the Court has recognised the right to water and, if so, in which manner.