994 resultados para Water potentials


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A water desaturation zone develops around a tunnel in water-saturated rock when the evaporative water loss at the rock surface is larger than the water flow from the surrounding saturated region of restricted permeability. We describe the methods with which such water desaturation processes in rock materials can be quantified. The water retention characteristic theta(psi) of crystalline rock samples was determined with a pressure membrane apparatus. The negative water potential, identical to the capillary pressure, psi, below the tensiometric range (psi < -0.1 MPa) can be measured with thermocouple psychrometers (TP), and the volumetric water contents, theta, by means of time domain reflectometry (TDR). These standard methods were adapted for measuring the water status in a macroscopically unfissured granodiorite with a total porosity of approximately 0.01. The measured water retention curve of granodiorite samples from the Grimsel test site (central Switzerland) exhibits a shape which is typical for bimodal pore size distributions. The measured bimodality is probably an artifact of a large surface ratio of solid/voids. The thermocouples were installed without a metallic screen using the cavity drilled into the granodiorite as a measuring chamber. The water potentials observed in a cylindrical granodiorite monolith ranged between -0.1 and -3.0 MPa; those near the wall in a ventilated tunnel between -0.1 and -2.2 MPa. Two types of three-rod TDR Probes were used, one as a depth probe inserted into the rock, the other as a surface probe using three copper stripes attached to the surface for detecting water content changes in the rock-to-air boundary. The TDR signal was smoothed with a low-pass filter, and the signal length determined based on the first derivative of the trace. Despite the low porosity of crystalline rock these standard methods are applicable to describe the unsaturated zone in solid rock and may also be used in other consolidated materials such as concrete.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effects of row orien¬tation on vine and soil water status in an irrigated vineyard. The trial was developed during 2006, 2007 and 2008, in the South East region of Madrid (Spain) on 5-year old Cabernet franc grapevines (Vitis vinifera L.) grafted onto 140Ru. Plant spacing was 2.5 m x 1.5 m and vines were trained to a VSP. Four orientations were stu¬died: North-South (N-S), East-West (E-W), Northeast-Southwest (N+45) and North-South +20o (N+20). Irrigation (0.4•ET0) started when shoot growth stopped. Soil water availability was measured using a TDR technique with forty buried probes. Row orientation did not have any effect on water consumption in the vineyard. At maturity, leaf water potential was measured at predawn, early mor¬ning, midday and 14:00 solar time, on both canopy sides - sun and shade – ; the early morning measurement was the one that better differentiated treatments. Leaf water potential was a good indica¬tor of plant water status. Differences between (N-S and E-W) and (N+20 and N+45) treatments were obtained both on sun and shade canopy sides, N+20 and N+45 having lower leaf water potentials then drier leaves. The water stress integral shows that N-S and E-W reach the end of maturation with a greater level of hydration than N+45 and N+20. As a whole, N+45 and N+20 orientations, without affecting too much the soil available water content, induce regularly more water stress to the vine at some periods, probably due to an higher sunlight interception in early morning which makes water limitation for the vine more early and thus more severe during the day.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Germination of macroconidia and/or microconidia of 24 strains of Fusarium solani, F. chlamydosporum, F. culmorum, F. equiseti, F. verticillioides, F. sambucinum, F. oxysporum and F. proliferatum isolated from fluvial channels and sea beds of the south-eastern coast of Spain, and three control strains (F. oxysporum isolated from affected cultures) was studied in distilled water in response to a range of water potentials adjusted with NaCI. (0, -13.79, -41.79, -70.37, -99.56 and -144.54 bars). The vialibility (UFC/ml) of suspension was also tested in three time periods (0,24 and 48h). Conidia always germinated in distilled water. The pattern of conidial germination obseved of F. verticillioides, F. oxysporum, F. proliferatum, F. chlamydosporum and F. culmorum was similar. A great diminution of spore germination was found in -13.79 bars solutions. Spore germination percentage for F. solani isolates was maximal at 48 h. and -13.79 bars with 21.33% spore germination, 16% higher than germination in distilled water. F. equiseti shows the maximum germination percentage in -144.54 bars solution in 24 h time with 12.36% germination. These results did not agree with those obtained in the viability test where maximum germination was found in distilled water. The viability analysis showed the great capacity of F. verticilloides strains to form viable colonies, even in such extreme conditions as -144,54 bars after 24 h F. proliferatum colony formation was prevented in the range of -70.37 bars. These results show the clear affectation of water potential to conidia germination of Fusaria. The ability of certain species of Fusarium to develop a saprophytic life in the salt water of the Mediterraneam Sea could be certain. Successful germination, even under high salty media conditions, suggests taht Fusarium spp. could have a competitive advantage over other soil fungi in crops irrigated with saline water. In the specific case of F. solani, water potential of -13.79 bars affected germination positively. It could indicate that F. solani has an special physiological mechanism of survival in low water potential environments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Schinus terebinthifolius Raddi (Schinus) is one of the most widely found woody exotic species in South Florida. This exotic is distributed across environments with different hydrologic regimes, from upland pine forests to the edges of sawgrass marshes and into saline mangrove forests. To determine if this invasive exotic had different physiological attributes compared to native species in a coastal habitat, we measured predawn xylem water potentials (Ψ), oxygen stable isotope signatures (δ18O), and sodium (Na+) and potassium (K+) contents of sap water from plants within: (1) a transition zone (between a mangrove forest and upland pineland) and (2) an upland pineland in Southwest Florida. Under dynamic salinity and hydrologic conditions, Ψ of Schinus appeared less subject to fluctuations caused by seasonality when compared with native species. Although stem water δ18O values could not be used to distinguish the depth of Schinus and native species' water uptake in the transition zone, Ψ and sap Na+/K+ patterns showed that Schinus was less of a salt excluder relative to the native upland species during the dry season. This exotic also exhibited Na+/K+ ratios similar to the mangrove species, indicating some salinity tolerance. In the upland pineland, Schinus water uptake patterns were not significantly different from those of native species. Differences between Schinus and native upland species, however, may provide this exotic an advantage over native species within mangrove transition zones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sonchus oleraceus (common sowthistle) is a dominant weed and has increased in prevalence in conservation cropping systems of the subtropical grain region of Australia. Four experiments were undertaken to define the environmental factors that favor its germination, emergence, and seed persistence. Seeds were germinated at constant temperatures between 5 and 35C and water potentials between 0 and -1.4 MPa. The maximum germination rate of 86-100% occurred at 0 and -0.2 MPa, irrespective of the temperature when exposed to light (12 h photoperiod light/dark), but the germination rate was reduced by 72% without light. At water potentials of -0.6 to -0.8 MPa, the germination rate was reduced substantially by higher temperatures; no seed germinated at a water potential >-1.0 MPa. Emergence and seed persistence were measured over 30 months following seed burial at 0 (surface), 1, 2, 5, and 10 cm depths in large pots that were buried in a south-eastern Queensland field. Seedlings emerged readily from the surface and 1 cm depth, with no emergence from below the 2 cm depth. The seedlings emerged during any season following rain but, predominantly, within 6 months of planting. Seed persistence was short-term on the soil surface, with 2% of seeds remaining after 6 months, but it increased with the burial depth, with 12% remaining after 30 months at 10 cm. Thus, a minimal seed burial depth with reduced tillage and increased surface soil water with stubble retention has favored the proliferation of this weed in any season in a subtropical environment. However, diligent management without seed replenishment will greatly reduce this weed problem within a short period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein−protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson−Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos−c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos−c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inselbergs são afloramentos rochosos isolados que emergem abruptamente acima das planícies que os circundam, formados principalmente por afloramentos de rochas graníticas e gnáissicas. São lugares com alta diversidade e endemismo, e caracterizados por alto grau de insolação, temperaturas do ar e do solo, com ventos fortes e solos com baixa retenção de água. Sementes de três espécies típicas dos inselbergs (Alcantarea glaziouana, Barbacenia purpurea e Tibouchina corymbosa) foram estudadas para avaliar o efeito das temperaturas constantes (15 a 40C) e alternada (20-30C), o estresse hídrico (Ψw = 0,0 a -1,2 MPa) promovido por soluções de polietileno glicol 6000 (PEG) e a qualidade da luz sob diferente valores de razão vermelho: vermelho extremo (V:VE), na porcentagem final e velocidade de germinação. Os resultados mostraram que todas as espécies têm sementes muito leves, variando entre 0,005 - 0,04 g. As três espécies apresentaram alta germinação sob temperaturas entre 20C e 30C, e não germinaram a 40C, exceto A. glaziouana. A máxima germinação foi obtida em água destilada (0 MPa) e as diferentes condições de estresse hídrico reduziram a percentagem e a velocidade de germinação de todas as espécies estudadas. A. glaziouana foi a espécie menos sensível a redução do potencial hídrico. As sementes de todas as espécies necessitam de exposição a luz para a máxima germinação (fotoblásticas positivas) e a porcentagem final de germinação foi inibida sob baixos valores de V:VE. A razão V:VE que resultou em 50% da máxima germinação variou entre as espécies. Estes resultados demonstram que a germinação pode limitar a capacidade das espécies em colonizar tanto novas áreas como área perturbadas, além de contribuir para a distribuição das espécies nos inselbergs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

随着三峡大坝建设,在2003年6月三峡库区蓄水到135 m水位,之后人为调节使其在137-139 m范围内波动变化。从2003年7月开始,我们对库区植物的水分关系及其对三峡水位上升的可能反应进行了系统研究。 在库区中残存的次生松栎混交林,我们从江边沿海拔梯度设置了3块样地:Riparian,Mid-hill和Top-hill样地,垂直高度相差约20 m。从2003年7月到2004年7月,我们比较了岸边样地内与高处两样地内植物的木质部水分稳定同位素D和18O值,植物清晨和中午水势,叶片碳稳定同位素值13C,以及2004年7月测定的气体交换。岸边 植物木质部水分同位素值显著高于江水的同位素值,而与高处两样地内植物木质部水分同位素相近。岸边植物与高 处植物具有相近的清晨水势和中午水势,也表明对岸边植物来说,江水并不是它们重要的水分来源。同样,岸边植 物叶片 13C值与高处同种植物的值也不存在显著差异。我们研究的3种植物清晨水势都与土壤含水量正相关,尤 其浅层土壤更为显著。研究结果表明岸边植物几乎没有利用江水,而同高处两样地内植物一样,都是以利用渗入到土壤中的降雨为主。 松栎混交林中,马尾松与槲栎相比,净光合速率和气孔导度,叶片含N量,以及清晨水势低于槲栎,而中午水势,叶片13C值高于槲栎。两种树木叶片13C值与含N量都成正相关关系。槲栎叶片13C值与清晨水势成负相关,而马尾松针叶13C值与清晨水势相关性并不显著。 在岸边的松栎混交幼林与成年林相比,幼树的清晨水势略高于对应的成年树,叶片13C值低于成年树;幼树的光合速率和气孔导度略高于成年树,而瞬时水分利用效率低于成年树,但差异均不显著。马尾松幼苗为实生苗,与成年树相比,更偏向于利用浅层土壤水;而槲栎幼树多为从原来被砍伐的树上萌生的,木质部水分同位素与成年树相近。 从2004年5月到10月,我们又对大坝下游江段岸边植物(马尾松,枫杨和柑桔)的水分关系进行了研究。木质部水分同位素比率表明,岸边植物木质部水分同位素比率与高处植物具相近的值,且显著高于江水同位素值。研究表明岸岸边和高处植物以降雨或靠降雨补充的浅层地下水为主要水分来源,即便岸边植物也几乎不利用江水。岸边植物与高处植物具有相近的清晨水势和中午水势,光合速率和气孔导度,以及叶片C值等,也进一步说明岸边植物与高处植物具有相近的水分生理特征。 叶片13C可以指示植物的一些生理过程,我们对松栎混交林中不同生活型植物的13C值进行了分析,乔木层叶片 13C值比较高,其中常绿针叶的值又高于落叶阔叶树木的值;林下灌木,非禾本科草本,及藤本植物的13C值都明显低于乔木层。 三峡大坝改变河水对植物生理生态过程的影响是一个长期的过程,库区水位上涨是否影响到岸边植物的生理过程及生长等,需要进一步作长期、定位和连续的观测研究。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Life cycle and population biology of a perennial halophyte Arthrocnemum indicum Willd, was studied from February 1992 to January 1993. During the 12 months, the population was exposed to great variations in soil salinity from 35 to 58 ms/cm2 and soil moisture ranging from flood to drought levels. Seasonal changes in dry weight are directly related to soil salinity stress. When salinity levels become low, the dry matter production increases. A little increase in dry weight from April to July indicates that more negative soil water potentials were limiting plant growth. Proline content increased considerably during the dry season with a corresponding increase in salinity. Water soluble oxalate did not vary much with changes in salinity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

© 2015 Published by Elsevier B.V.Throughout the southern US, past forest management practices have replaced large areas of native forests with loblolly pine plantations and have resulted in changes in forest response to extreme weather conditions. However, uncertainty remains about the response of planted versus natural species to drought across the geographical range of these forests. Taking advantage of a cluster of unmanaged stands (85-130year-old hardwoods) and managed plantations (17-20year-old loblolly pine) in coastal and Piedmont areas of North Carolina, tree water use, cavitation resistance, whole-tree hydraulic (Ktree) and stomatal (Gs) conductances were measured in four sites covering representative forests growing in the region. We also used a hydraulic model to predict the resilience of those sites to extreme soil drying. Our objectives were to determine: (1) if Ktree and stomatal regulation in response to atmospheric and soil droughts differ between species and sites; (2) how ecosystem type, through tree water use, resistance to cavitation and rooting profiles, affects the water uptake limit that can be reached under drought; and (3) the influence of stand species composition on critical transpiration that sets a functional water uptake limit under drought conditions. The results show that across sites, water stress affected the coordination between Ktree and Gs. As soil water content dropped below 20% relative extractable water, Ktree declined faster and thus explained the decrease in Gs and in its sensitivity to vapor pressure deficit. Compared to branches, the capability of roots to resist high xylem tension has a great impact on tree-level water use and ultimately had important implications for pine plantations resistance to future summer droughts. Model simulations revealed that the decline in Ktree due to xylem cavitation aggravated the effects of soil drying on tree transpiration. The critical transpiration rate (Ecrit), which corresponds to the maximum rate at which transpiration begins to level off to prevent irreversible hydraulic failure, was higher in managed forest plantations than in their unmanaged counterparts. However, even with this higher Ecrit, the pine plantations operated very close to their critical leaf water potentials (i.e. to their permissible water potentials without total hydraulic failure), suggesting that intensively managed plantations are more drought-sensitive and can withstand less severe drought than natural forests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impact of environment on the germination biology of Striga hermonthica was studied in the laboratory by conditioning seeds at various water potentials and urea concentrations at 17.5 to 37.5°C for up to 133 days. The experimental results presented in this research are related to the effects of temperature, water potential and urea nitrogen concentration during conditioning on subsequent germination percentage of S. hermonthica. Maximum germination in S. hermonthica seeds was observed at conditioning temperatures of 20 to 25°C within the range investigated of 17.5 to 37.5°C. Water stress and also urea during conditioning suppressed maximum germination. However, the conditioning temperature ranges at which maximum germination percentages occur vary with water stress and also urea concentration. In the presence of a high concentration of urea (3.16 mM), temperatures required for maximum germination narrowed to between 17.5 to 20°C. The optimum period of conditioning decreased with increase in water stress and also urea concentration similar to previous reports. The implications of these findings on Striga hermonthica field infestations have been investigated and being reported in another paper. Germination was greatly suppressed by conditioning environments including 3.16 mM urea and at 37.5°C. At the high concentration of 3.16 mM, temperatures required for maximum germination narrowed to between 17.5 and 20°C. Optimum conditioning period decreased with water stress and with increase in urea concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impact of environment on the germination biology of the parasite was studied in the laboratory with seeds conditioned at various water potentials, urea concentrations and at 17.5 to 37.5°C for up to 133 days. Maximum germination was observed at 20 to 25°C. Water stress and urea suppressed maximum germination. The final percentage germination response to period of conditioning showed a non-linear relationship and suggests the release of seeds from dormancy during the initial period and later on dormancy induction. Germination percentage increased with increase in conditioning period to a threshold and remained stable for variable periods followed by a decline with further extension of conditioning time. The decline in germination finally terminated in zero germination in most treatments before the end of experimentation. The investigated factors of temperature, water potential and urea showed clear effects on the expression of dormancy pattern of the parasite. The effects of water potential and urea were viewed as modifying a primary response of seeds to temperature during conditioning. The changes in germinability potential during conditioning were consistent with the hypothesis that dormancy periods are normally distributed within seed populations and that loss of primary dormancy precedes induction of secondary dormancy. Hence an additive mathematical model of loss of primary dormancy and induction of secondary as affected by environment was developed as: G = {[Φ-1 (Kp+ (po+pnN+pwW) (T-Tb) t)]-[Φ-1 (Ks+ ((swW+sa)+sorT)t)]}[Φ-1(aT2+bT+c+cwW)].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been observed in the present study that when spores of Trichoderma harzianum (Th-2) isolate were applied in the sandy clay loam soil and continuously incubated for 4 months at 25 degrees C and 35 degrees C and at three water potentials, -0.03 MPa, -0.3 MPa and <-50 MPa, it has resulted in significantly reduced (P<0.05), growth of Fusarium oxysporum ciceri (Foc) on branches of chickpea plant. The pathogen population was greatly reduced in the moist soil (43 MPa) when compared with the wet soil (-0.03 MPa) at both temperatures which was indicated by greater colonization and growth of T. harzanum-2 on the branch pieces of chickpea plants. The pathogen was completely eradicated from the chickpea branch pieces, after 6 months at 35 degrees C in the moist soil. In air-dry soil (<-50 MPa), Foc survived in 100% of the branch pieces even after 6 months at both temperatures. When chickpea plant branch pieces having pathogen was sprayed with Th-2 antagonistic isolates of Trichoderma spp., the Th-2 isolate killed the pathogen up to minimum level (10-12%) after 5 months at 35 degrees C in the sandy clay loam soil. It can be concluded that in chickpea growing rainfed areas of Pakistan having sandy clay loam soil, Foc can be controlled by using specific Trichoderma spp., especially in the summer season as after harvest of the crop the temperature increased up and there is rainfall during this period which makes the soil moist. This practice will be able to reduce the inoculum of Foc during this hot period as field remain fallow till next crop is sown in most of the chickpea growing rainfed areas of Pakistan.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated commensalism of water use among annual shallow-rooted and perennial deep-rooted pasture legumes by examining the effect of hydraulic lift by Cullen pallidum (N.T.Burb.) J.W.Grimes and Medicago sativa on growth, survival and nutrient uptake of Trifolium subterraneum L. A vertically split-root design allowed separate control of soil water in top and bottom soil. Thirty-five days after watering ceased in the top tube, but soil remained at field capacity in the bottom tube, an increase in shallow soil water content by hydraulic lift was 5.6 and 5.9 g kg−1 soil overnight for C. pallidum and M. sativa, respectively. Trifolium subterraneum in this treatment maintained higher leaf water potentials (with M. sativa) or exhibited a slower decline (with C. pallidum) than without companion perennial plants; and shoot biomass of T. subterraneum was 56% (with C. pallidum) and 67% (with M. sativa) of that when both top and bottom tubes were at field capacity. Uptake of rubidium (a potassium analog) and phosphorus by T. subterraneum was not facilitated by hydraulic lift. Interestingly, phosphorus content was threefold greater, and shoot biomass 1.5–3.3-fold greater when T. subterraneum was interplanted with C. pallidum compared with M. sativa, although dry weight of C. pallidum was much greater than that of M. sativa. This study showed that interplanting with deep-rooted perennial legumes has benefited the survival of T. subterraneum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endogenous contents of indolyl-3-acetic acid (IAA) and abscisic acid (ABA) were quantified in excised roots of Catasetum fimbriatum (Orchidaceae) cultured in vitro on solidified Vacin and Went medium with 1, 2, 4, 6, 8 and 10 % sucrose, as well as 2 % sucrose plus mannitol. Maximum root growth was observed in media with 4 % sucrose and 2 % sucrose plus 2.2 % mannitol, suggesting that a moderate water or osmotic stress promotes orchid root growth. Contents of both ABA and IAA increased in parallel to increasing sucrose concentration and a correlation between root elongation and the ABA/IAA ratio was observed. Incubating isolated C. fimbriatum roots with radiolabeled tryptophan, we showed an accumulation of IAA and its conjugates.