999 resultados para Water pipelines
Resumo:
In oil and gas pipeline operations, the gas, oil, and water phases simultaneously move through pipe systems. The mixture cools as it flows through subsea pipelines, and forms a hydrate formation region, where the hydrate crystals start to grow and may eventually block the pipeline. The potential of pipe blockage due to hydrate formation is one of the most significant flow-assurance problems in deep-water subsea operations. Due to the catastrophic safety and economic implications of hydrate blockage, it is important to accurately predict the simultaneous flow of gas, water, and hydrate particles in flowlines. Currently, there are few or no studies that account for the simultaneous effects of hydrate growth and heat transfer on flow characteristics within pipelines. This thesis presents new and more accurate predictive models of multiphase flows in undersea pipelines to describe the simultaneous flow of gas, water, and hydrate particles through a pipeline. A growth rate model for the hydrate phase is presented and then used in the development of a new three-phase model. The conservation equations of mass, momentum, and energy are formulated to describe the physical phenomena of momentum and heat transfer between the fluid and the wall. The governing equations are solved based on an analytical-numerical approach using a Newton-Raphson method for the nonlinear equations. An algorithm was developed in Matlab software to solve the equations from the inlet to the outlet of the pipeline. The developed models are validated against a single-phase model with mixture properties, and the results of comparative studies show close agreement. The new model predicts the volume fraction and velocity of each phase, as well as the mixture pressure and temperature profiles along the length of the pipeline. The results from the hydrate growth model reveal the growth rate and location where the initial hydrates start to form. Finally, to assess the impact of certain parameters on the flow characteristics, parametric studies have been conducted. The results show the effect of a variation in the pipe diameter, mass flow rate, inlet pressure, and inlet temperature on the flow characteristics and hydrate growth rates.
Resumo:
Water systems in the Sultanate of Oman are inevitably exposed to varied threats and hazards due to both natural and man-made hazards. Natural disasters, especially tropical cyclone Gonu in 2007, cause immense damage to water supply systems in Oman. At the same time water loss from leaks is a major operational problem. This research developed an integrated approach to identify and rank the risks to the water sources, transmission pipelines and distribution networks in Oman and suggests appropriate mitigation measures. The system resilience was evaluated and an emergency response plan for the water supplies developed. The methodology involved mining the data held by the water supply utility for risk and resilience determination and operational data to support calculations of non-revenue water. Risk factors were identified, ranked and scored at a stakeholder workshop and the operational information required was principally gathered from interviews. Finally, an emergency response plan was developed by evaluating the risk and resilience factors. The risk analysis and assessment used a Coarse Risk Analysis (CRA) approach and risk scores were generated using a simple risk matrix based on WHO recommendations. The likelihoods and consequences of a wide range of hazardous events were identified through a key workshop and subsequent questionnaires. The thesis proposes a method of translating the detailed risk evaluations into resilience scores through a methodology used in transportation networks. A water audit indicated that the percentage of NRW in Oman is greater than 35% which is similar to other Gulf countries but high internationally. The principal strategy for managing NRW used in the research was the AWWA water audit method which includes free to use software and was found to be easy to apply in Oman. The research showed that risks to the main desalination processes can be controlled but the risk due to feed water quality might remain high even after implementing mitigation measures because the intake is close to an oil port with a significant risk of oil contamination and algal blooms. The most severe risks to transmission mains were found to be associated with pipe rather than pump failure. The systems in Oman were found to be moderately resilient, the resilience of desalination plants reasonably high but the transmission mains and pumping stations are very vulnerable. The integrated strategy developed in this study has a wide applicability, particularly in the Gulf area, which may have risks from exceptional events and will be experiencing NRW. Other developing countries may also experience such risks but with different magnitudes and the risk evaluation tables could provide a useful format for further work.
Resumo:
The present methods for the detection of oil in discharge water are based either on chemical analysis of intermittent samples or bypass pipelines with instrumentation to detect either dissolved or dispersed hydrocarbons by a variety of optical techniques including absorption, scattering and fluorescence. However, test have shown that no single instruments entirely meets either present needs or satisfies the requirements of the future more stringent legislation which may limit total hydrocarbon content to 30 ppm or even less. Hence, in this paper, a detector is devised which can detect both dissolved and dispersed oil products, has a high immunity to scattering and can operate in-line and harsh environments with a detection sensitivity of a few ppm throughout a wide range of operations.