965 resultados para Water demand
Resumo:
Accurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments. In this paper, we propose to assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using a lumped conceptual model (COMFORT). The model is calibrated using a 5 year hydrological monitoring of an experimental watershed under dry deciduous forest in South India (Mule Hole watershed). The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with alternance of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm year(-1) and the evapotranspiration was about 900 mm year(-1) out of which 100 mm year(-1) was uptake from the deep saprolite horizons. The stream flow was 100 mm year(-1) while the groundwater underflow was 80 mm year(-1). The simulation results suggest that (i) deciduous trees can uptake a significant amount of water from the deep regolith, (ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers and (iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an approach to model the expected impacts of climate change on irrigation water demand in a reservoir command area. A statistical downscaling model and an evapotranspiration model are used with a general circulation model (GCM) output to predict the anticipated change in the monthly irrigation water requirement of a crop. Specifically, we quantify the likely changes in irrigation water demands at a location in the command area, as a response to the projected changes in precipitation and evapotranspiration at that location. Statistical downscaling with a canonical correlation analysis is carried out to develop the future scenarios of meteorological variables (rainfall, relative humidity (RH), wind speed (U-2), radiation, maximum (Tmax) and minimum (Tmin) temperatures) starting with simulations provided by a GCM for a specified emission scenario. The medium resolution Model for Interdisciplinary Research on Climate GCM is used with the A1B scenario, to assess the likely changes in irrigation demands for paddy, sugarcane, permanent garden and semidry crops over the command area of Bhadra reservoir, India. Results from the downscaling model suggest that the monthly rainfall is likely to increase in the reservoir command area. RH, Tmax and Tmin are also projected to increase with small changes in U-2. Consequently, the reference evapotranspiration, modeled by the Penman-Monteith equation, is predicted to increase. The irrigation requirements are assessed on monthly scale at nine selected locations encompassing the Bhadra reservoir command area. The irrigation requirements are projected to increase, in most cases, suggesting that the effect of projected increase in rainfall on the irrigation demands is offset by the effect due to projected increase/change in other meteorological variables (viz., Tmax and Tmin, solar radiation, RH and U-2). The irrigation demand assessment study carried out at a river basin will be useful for future irrigation management systems. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Global change in climate and consequent large impacts on regional hydrologic systems have, in recent years, motivated significant research efforts in water resources modeling under climate change. In an integrated future hydrologic scenario, it is likely that water availability and demands will change significantly due to modifications in hydro-climatic variables such as rainfall, reservoir inflows, temperature, net radiation, wind speed and humidity. An integrated regional water resources management model should capture the likely impacts of climate change on water demands and water availability along with uncertainties associated with climate change impacts and with management goals and objectives under non-stationary conditions. Uncertainties in an integrated regional water resources management model, accumulating from various stages of decision making include climate model and scenario uncertainty in the hydro-climatic impact assessment, uncertainty due to conflicting interests of the water users and uncertainty due to inherent variability of the reservoir inflows. This paper presents an integrated regional water resources management modeling approach considering uncertainties at various stages of decision making by an integration of a hydro-climatic variable projection model, a water demand quantification model, a water quantity management model and a water quality control model. Modeling tools of canonical correlation analysis, stochastic dynamic programming and fuzzy optimization are used in an integrated framework, in the approach presented here. The proposed modeling approach is demonstrated with the case study of the Bhadra Reservoir system in Karnataka, India.
Resumo:
Climate change is most likely to introduce an additional stress to already stressed water systems in developing countries. Climate change is inherently linked with the hydrological cycle and is expected to cause significant alterations in regional water resources systems necessitating measures for adaptation and mitigation. Increasing temperatures, for example, are likely to change precipitation patterns resulting in alterations of regional water availability, evapotranspirative water demand of crops and vegetation, extremes of floods and droughts, and water quality. A comprehensive assessment of regional hydrological impacts of climate change is thus necessary. Global climate model simulations provide future projections of the climate system taking into consideration changes in external forcings, such as atmospheric carbon-dioxide and aerosols, especially those resulting from anthropogenic emissions. However, such simulations are typically run at a coarse scale, and are not equipped to reproduce regional hydrological processes. This paper summarizes recent research on the assessment of climate change impacts on regional hydrology, addressing the scale and physical processes mismatch issues. Particular attention is given to changes in water availability, irrigation demands and water quality. This paper also includes description of the methodologies developed to address uncertainties in the projections resulting from incomplete knowledge about future evolution of the human-induced emissions and from using multiple climate models. Approaches for investigating possible causes of historically observed changes in regional hydrological variables are also discussed. Illustrations of all the above-mentioned methods are provided for Indian regions with a view to specifically aiding water management in India.
Resumo:
The water problems confronting Hallandale are similar to those of other coastal cities of southeastern Florida which are undergoing rapid growth with tremendous increase in water demand. The highly permeable Biscayne aquifer underlying the Hallandale area is an excellent source of water; however, the permeable nature of the Biscayne aquifer would permit the intrusion of sea water, if fresh water levels were lowered excessively, as well as the infiltration of urban or industrial contaminants, from land surfaces and surface water bodies. This study is to provide the hydrologic data necessary for proper water resource development and planning in the Hallandale area. (40 page document)
Resumo:
Effective management is a key to ensuring the current and future sustainability of land, water and energy resources. Identifying the complexities of such management is not an easy task, especially since past studies have focussed on studying these resources in isolation from one another. However, with rapid population growth and an increase in the awareness of a potential change in climatic conditions that may affect the demand for and supply of food, water and energy, there has been a growing need to integrate the planning decisions relating to these three resources. The paper shows the visualisation of linked resources by drawing a set of interconnected Sankey diagrams for energy, water and land. These track the changes from basic resource (e.g. coal, surface water, groundwater and cropland) through transformations (e.g. fuel refining and desalination) to final services (e.g. sustenance, hygiene and transportation). The focus here is on the water analysis aspects of the tool, which uses California as a detailed case study. The movement of water in California is traced from its source to its services by mapping the different transformations of water from when it becomes available, through its use, to further treatment, to final sinks (including recycling and reuse of that resource). The connections that water has with energy and land resources for the state of California are highlighted. This includes the amount of energy used to pump and treat water, and the amount of water used for energy production and the land resources which create a water demand to produce crops for food. By mapping water in this way, policy-makers and resource managers can more easily understand the competing uses of water (environment, agriculture and urban use) through the identification of the services it delivers (e.g. sanitation, agriculture, landscaping), the potential opportunities for improving the management of the resource (e.g. building new desalination plants, reducing the demand for services), and the connections with other resources which are often overlooked in a traditional sector-based management strategy.
Resumo:
This paper describes a novel approach to the analysis of supply and demand of water in California. A stochastic model is developed to assess the future supply of and demand for water resources in California. The results are presented in the form of a Sankey diagram where present and stochastically-varying future fluxes of water in California and its sub-regions are traced from source to services by mapping the various transformations of water from when it is first made available for use, through its treatment, recycling and reuse, to its eventual loss in a variety of sinks. This helps to highlight the connections of water with energy and land resources, including the amount of energy used to pump and treat water, the amount of water used for energy production, and the land resources that create a water demand to produce crops for food. By mapping water in this way, policy-makers can more easily understand the competing uses of water, through the identification of the services it delivers (e.g. sanitation, food production, landscaping), the potential opportunities for improving themanagement of the resource and the connections with other resources which are often overlooked in a traditional sector-based management strategy. This paper focuses on a Sankey diagram for water, but the ultimate aim is the visualisation of linked resource futures through inter-connected Sankey diagrams for energy, land and water, tracking changes from the basic resources for all three, their transformations, and the final services they provide.
Resumo:
Through an examination of global climate change models combined with hydrological data on deteriorating water quality in the Middle East and North Africa (MENA), we elucidate the ways in which the MENA countries are vulnerable to climate-induced impacts on water resources. Adaptive governance strategies, however, remain a low priority for political leaderships in the MENA region. To date, most MENA governments have concentrated the bulk of their resources on large-scale supply side projects such as desalination, dam construction, inter-basin water transfers, tapping fossil groundwater aquifers, and importing virtual water. Because managing water demand, improving the efficiency of water use, and promoting conservation will be key ingredients in responding to climate-induced impacts on the water sector, we analyze the political, economic, and institutional drivers that have shaped governance responses. While the scholarly literature emphasizes the importance of social capital to adaptive governance, we find that many political leaders and water experts in the MENA rarely engage societal actors in considering water risks. We conclude that the key capacities for adaptive governance to water scarcity in MENA are underdeveloped. © 2010 Springer Science+Business Media B.V.
Resumo:
The fast increase in the energy’s price has brought a growing concern about the highly expensive task of transporting water. By creating an hydraulic model of the Water Supply System’s (WSS) network and predicting its behaviour, it is possible to take advantage of the energy’s tariffs, reducing the total cost on pumping activities. This thesis was developed, in association with a technology transfer project called the E-Pumping. It focuses on finding a flexible supervision and control strategy, adaptable to any existent Water Supply System (WSS), as well as forecasting the water demand on a time period chosen by the end user, so that the pumping actions could be planned to an optimum schedule, that minimizes the total operational cost. The OPC protocol, associated to a MySQL database were used to develop a flexible tool of supervision and control, due to their adaptability to function with equipments from various manufacturers, being another integrated modular part of the E-Pumping project. Furthermore, in this thesis, through the study and performance tests of several statistical models based on time series, specifically applied to this problem, a forecasting tool adaptable to any station, and whose model parameters are automatically refreshed at runtime, was developed and added to the project as another module. Both the aforementioned modules were later integrated with an Graphical User Interface (GUI) and installed in a pilot application at the ADDP’s network. The implementation of this software on WSSs across the country will reduce the water supply companies’ running costs, improving their market competition and, ultimately, lowering the water price to the end costumer.
Resumo:
The rivers are considered as the life line of any country since they make water available for our domestic, industrial and recreational functions. The quality of river water signifies the health status and hygienic aspects of a particular region, but the quality of these life lines is continuously deteriorating due to discharge of sewage, garbage and industrial effluents into them. Thrust on water demand has increased manifolds due to the increased population, therefore tangible efforts to make the water sources free from pollution is catching attention all across the globe. This paper attempts to highlight the trends in water quality change of River Beas, right from Manali to Larji in India. This is an important river in the state of Himachal Pradesh and caters to the need of water for Manali and Kullu townships, besides other surrounding rural areas. The Manali-Larji Beas river stretch is exposed to the flow of sewage, garbage and muck resulting from various project activities, thereby making it vulnerable to pollution. In addition, the influx of thousands of tourists to these towns also contributes to the pollution load by their recreational and other tourist related activities. Pollution of this river has ultimately affected the livelihood of local population in this region. Hence, water quality monitoring was carried out for the said stretch between January, 2010 and January, 2012 at 15 various locations on quarterly basis, right from the upstream of Manali town and up to downstream of Larji dam. Temperature, color, odor, D.O. , pH, BOD, TSS, TC and FC has been the parameters that were studied. This study gives the broad idea about the characteristics of water at locations in the said river stretch, and suggestions for improving water quality and livelihood of local population in this particular domain.
Resumo:
Smart water metering technologies for residential buildings offer, in principle, great opportunities for sustainable urban water management. However, much of this potential is as yet unrealized. Despite that several ICT solutions have already been deployed aiming at optimum operations on the water utilities side (e.g. real time control for water networks, dynamic pump scheduling etc.), little work has been done to date on the consumer side. This paper presents a web-based platform targeting primarily the household end user. The platform enables consumers to monitor, on a real-time basis, the water demand of their household, providing feedback not only on the total water consumption and relevant costs but also on the efficiency (or otherwise) of specific indoor and outdoor uses. Targeting the reduction of consumption, the provided feedback is combined with notifications about possible leakages\bursts, and customised suggestions to improve the efficiency of existing household uses. It also enables various comparisons, with past consumption or even with that of similar households, aiming to motivate further the householder to become an active player in the water efficiency challenge. The issue of enhancing the platform’s functionality with energy timeseries is also discussed in view of recent advances in smart metering and the concept of “smart cities”. The paper presents a prototype of this web-based application and critically discusses first testing results and insights. It also presents the way in which the platform communicates with central databases, at the water utility level. It is suggested that such developments are closing the gap between technology availability and usefulness to end users and could help both the uptake of smart metering and awareness raising leading, potentially, to significant reductions of urban water consumption. The work has received funding from the European Union FP7 Programme through the iWIDGET Project, under grant agreement no318272.
Resumo:
This study econometrically analyses the projected impact of climate change on the water sector of nine Caribbean countries to 2100: Aruba, Barbados, Dominican Republic, Guyana, Montserrat, Jamaica, Netherlands Antilles, Saint Lucia, and Trinidad and Tobago. Overall, all countries, with the exception of Trinidad and Tobago, are expected to suffer aggregate losses as result of climate change in the early periods ca. 2020 under one or more scenarios. Over time, some countries experience declining negative impacts, as in the case of Guyana under the B2 scenario. Some countries, such as the Dominican Republic, is projected to suffer increasing losses under the B2 scenario and, for others, the impacts do not follow a defined trend. The A2 scenario offers the best outcome for all countries, except Jamaica (where BAU is most desirable), Montserrat (which performs most poorly under the A2 scenario), and the Netherlands Antilles, which does best under the B2 case. Overall, relative to 2006, the total demand for water in the Caribbean is expected to fall by 2030 by 11.3% to approximately 12,967 million cubic meters. This is due to the expected fall in agricultural water demand by approximately 36% in that period. However, by 2050, total water demand for the Caribbean will again exceed the 2006 level by approximately 4% to 14,896.33 106 m3. By 2100, water demand will increase almost fivefold to approximately 69,233.69 106 m3. Climate change is expected to affect all countries in the Caribbean. In some cases, there will be positive impacts that may continue to increase over time and, in other cases, the impact will be negative and worsen over time. Overall, the agricultural sector is expected to suffer the worst losses over any scenario, whilst growth in the industrial sectors is expected to be significant and contribute the most to increasing water demand over time.
Resumo:
Changing precipitation patterns and temperature relate directly to water resources and water security. This report presents the findings of an assessment of the water sector in Grenada with respect to the projected impact of climate change. Grenada‘s water resources comprise primarily surface water, with an estimated groundwater potential to satisfy about 10%-15% of the present potable requirement. On the smaller islands Carriacou and Petite Martinique, domestic water is derived exclusively from rainwater catchments. Rainfall seasonality is marked and the available surface water during the dry season declines dramatically. Changing land use patterns, increase in population, expansion in tourism and future implementation of proposed irrigation schemes are projected to increase future water requirements. Economic modeling approaches were implemented to estimate sectoral demand and supply between 2011 and 2050. Residential, tourism and domestic demand were analysed for the A2, B2 and BAU scenarios as illustrated. The results suggest that water supply will exceed forecasted water demand under B2 and BAU during all four decades. However under the A2 scenario, water demand will exceed water supply by the year 2025. It is important to note that the model has been constrained by the omission of several key parameters, and time series for climate indicators, data for which are unavailable. Some of these include time series for discharge data, rainfall-runoff data, groundwater recharge rates, and evapotranspiration. Further, the findings which seem to indicate adequacy of water are also masked by seasonality in a given year, variation from year to year, and spatial variation within the nation state. It is imperative that some emphasis be placed on data generation in order to better project for the management of Grenada‘s water security. This analysis indicates the need for additional water catchment, storage and distribution infrastructure, as well as institutional strengthening, in order to meet the future needs of the Grenadian population. Strategic priorities should be adopted to increase water production, increase efficiency, strengthen the institutional framework, and decrease wastage. Grenada has embarked on several initiatives that can be considered strategies toward adaptation to the variabilities associated with climate change. The Government should ensure that these programs be carried out to the optimal levels for reasons described above. The ―no-regrets approach‖ which intimates that measures will be beneficial with or without climate change should be adopted. A study on the Costs of Inaction for the Caribbean in the face of climate change listed Grenada among the countries which would experience significant impacts on GDP between now and 2100 without adaptation interventions. Investment in the water sector is germane to building Grenada‘s capacity to cope with the multivariate impact of changes in the parameters of climate.
Resumo:
The best description of water resources for Grand Turk was offered by Pérez Monteagudo (2000) who suggested that rain water was insufficient to ensure a regular water supply although water catchment was being practised and water catchment possibilities had been analysed. Limestone islands, mostly flat and low lying, have few possibilities for large scale surface storage, and groundwater lenses exist in very delicate equilibrium with saline seawater, and are highly likely to collapse due to sea level rise, improper extraction, drought, tidal waves or other extreme event. A study on the impact of climate change on water resources in the Turks and Caicos Islands is a challenging task, due to the fact that the territory of the Islands covers different environmental resources and conditions, and accurate data are lacking. The present report is based on collected data wherever possible, including grey data from several sources such as the Intergovernmental Panel on Climate Change (IPCC) and Cuban meteorological service data sets. Other data were also used, including the author’s own estimates and modelling results. Although challenging, this was perhaps the best approach towards analysing the situation. Furthermore, IPCC A2 and B2 scenarios were used in the present study in an effort to reduce uncertainty. The main conclusion from the scenario approach is that the trend observed in precipitation during the period 1961 - 1990 is decreasing. Similar behaviour was observed in the Caribbean region. This trend is associated with meteorological causes, particularly with the influence of the North Atlantic Anticyclone. The annual decrease in precipitation is estimated to be between 30-40% with uncertain impacts on marine resources. After an assessment of fresh water resources in Turks and Caicos Islands, the next step was to estimate residential water demand based on a high fertility rate scenario for the Islands (one selected from four scenarios and compared to countries having similar characteristics). The selected scenario presents higher projections on consumption growth, enabling better preparation for growing water demand. Water demand by tourists (stopover and excursionists, mainly cruise passengers) was also obtained, based on international daily consumption estimates. Tourism demand forecasts for Turks and Caicos Islands encompass the forty years between 2011 and 2050 and were obtained by means of an Artificial Neural Networks approach. for the A2 and B2 scenarios, resulting in the relation BAU>B2>A2 in terms of tourist arrivals and water demand levels from tourism. Adaptation options and policies were analysed. Resolving the issue of the best technology to be used for Turks and Caicos Islands is not directly related to climate change. Total estimated water storage capacity is about 1, 270, 800 m3/ year with 80% capacity load for three plants. However, almost 11 desalination plants have been detected on Turks and Caicos Islands. Without more data, it is not possible to estimate long term investment to match possible water demand and more complex adaptation options. One climate change adaptation option would be the construction of elevated (30 metres or higher) storm resistant water reservoirs. The unit cost of the storage capacity is the sum of capital costs and operational and maintenance costs. Electricity costs to pump water are optional as water should, and could, be stored for several months. The costs arising for water storage are in the range of US$ 0.22 cents/m3 without electricity costs. Pérez Monteagudo (2000) estimated water prices at around US$ 2.64/m3 in stand points, US$ 7.92 /m3 for government offices, and US$ 13.2 /m3for cistern truck vehicles. These data need to be updated. As Turks and Caicos Islands continues to depend on tourism and Reverse Osmosis (RO) for obtaining fresh water, an unavoidable condition to maintaining and increasing gross domestic product(GDP) and population welfare, dependence on fossil fuels and vulnerability to increasingly volatile prices will constitute an important restriction. In this sense, mitigation supposes a synergy with adaptation. Energy demand and emissions of carbon dioxide (CO2) were also estimated using an emissions factor of 2. 6 tCO2/ tonne of oil equivalent (toe). Assuming a population of 33,000 inhabitants, primary energy demand was estimated for Turks and Caicos Islands at 110,000 toe with electricity demand of around 110 GWh. The business as usual (BAU), as well as the mitigation scenarios were estimated. The BAU scenario suggests that energy use should be supported by imported fossil fuels with important improvements in energy efficiency. The mitigation scenario explores the use of photovoltaic and concentrating solar power, and wind energy. As this is a preliminary study, the local potential and locations need to be identified to provide more relevant estimates. Macroeconomic assumptions are the same for both scenarios. By 2050, Turks and Caicos Islands could demand 60 m toe less than for the BAU scenario.
Resumo:
Modeling of future water systems at the regional scale is a difficult task due to the complexity of current structures (multiple competing water uses, multiple actors, formal and informal rules) both temporally and spatially. Representing this complexity in the modeling process is a challenge that can be addressed by an interdisciplinary and holistic approach. The assessment of the water system of the Crans-Montana-Sierre area (Switzerland) and its evolution until 2050 were tackled by combining glaciological, hydrogeological, and hydrological measurements and modeling with the evaluation of water use through documentary, statistical and interview-based analyses. Four visions of future regional development were co-produced with a group of stakeholders and were then used as a basis for estimating future water demand. The comparison of the available water resource and the water demand at monthly time scale allowed us to conclude that for the four scenarios socioeconomic factors will impact on the future water systems more than climatic factors. An analysis of the sustainability of the current and future water systems based on four visions of regional development allowed us to identify those scenarios that will be more sustainable and that should be adopted by the decision-makers. The results were then presented to the stakeholders through five key messages. The challenges of communicating the results in such a way with stakeholders are discussed at the end of the article.