962 resultados para Water conservation projects
Resumo:
Many efforts have been made in Ethiopia to mitigate land degradation, particularly soil erosion, through both local and newly introduced soil and water conservation (SWC) practices. However, the strict focus on soil erosion and conservation does not necessarily lead to satisfactory results. If SWC is effective in reducing erosion but is at the same time too costly and unacceptable to land users, sooner or later it will disappear and its positive effects will also be lost. This book therefore suggests to follow the broader approach of Sustainable Land Management (SLM), which aims at ecological soundness, economic viability and social acceptability, and thus places SWC in a more holistic framework that is closer to farmers’ reality.
Resumo:
Excessive runoff and soil erosion in the upper Blue Nile Basin poses a threat that has attracted the attention of the Ethiopian government because of the serious on-site effects in addition to downstream effects, such as the siltation of water harvesting structures and reservoirs. The objective of the study was to evaluate and recommend effective biophysical soil and water conservation measure(s) in the Debre Mewi watershed, about 30 km south of the Lake Tana. Six conservation measures were evaluated for their effects on runoff, soil loss, and forage yield using runoff plots. There was a significant difference between treatments for both runoff and soil loss. The four-year average annual soil loss in the different plots ranged from 26 to 71 t ha−1, and total runoff ranged from 180 to 302 mm, while annual rainfall varied between 854 mm in 2008 and 1247 mm in 2011. Soil bund combined with elephant grass had the lowest runoff and soil loss as compared to the other treatments, whereas the untreated control plot had the highest for both parameters. As an additional benefit, 2.8 and 0.7 t ha−1 year−1 of dried forage was obtained from elephant and local grasses, respectively. Furthermore, it was found that soil bund combined with Tephrosia increased soil organic matter by 13% compared to the control plot. Soil bund efficiency was significantly enhanced by combining them with biological measures and improved farmers’ perception of soil and water conservation measures.
Resumo:
The guidelines discuss the following topics: - Towards a common understanding of Soil & Water Conservation - Disturbances in the water and biomass cycle lead to a decrease in soil fertility - Diagnosis of the local water and biomass cycle and their links - Assessment of S&W Conservation measures - Implementation of S&W Conservation measures
Resumo:
For successful implementation of any soil and water conservation (SWC) or sustainable land management practice, it is essential to have a proper understanding of the natural and human environment in which these practices are applied. This understanding should be based on comprehensive information concerning the application of the technologies and not solely on the technological details. The World Overview of Conservation Approaches and Technologies (WOCAT) is documenting and evaluating SWC practices worldwide, following a standardised methodology that facilitates exchange and comparison of experiences. Notwithstanding this standardisation, WOCAT allows flexible use of its outputs, adapted to different users and different environments. WOCAT offers a valuable tool for evaluating the strengths and weaknesses of SWC practices and their potential for application in other areas. Besides collecting a wealth of information, gaps in available information are also exposed, showing the need for more research in those fields. Several key issues for development- oriented research have been identified and are being addressed in collaboration with a research programme for mitigating syndromes of global change.
Resumo:
An efficient and reliable automated model that can map physical Soil and Water Conservation (SWC) structures on cultivated land was developed using very high spatial resolution imagery obtained from Google Earth and ArcGIS, ERDAS IMAGINE, and SDC Morphology Toolbox for MATLAB and statistical techniques. The model was developed using the following procedures: (1) a high-pass spatial filter algorithm was applied to detect linear features, (2) morphological processing was used to remove unwanted linear features, (3) the raster format was vectorized, (4) the vectorized linear features were split per hectare (ha) and each line was then classified according to its compass direction, and (5) the sum of all vector lengths per class of direction per ha was calculated. Finally, the direction class with the greatest length was selected from each ha to predict the physical SWC structures. The model was calibrated and validated on the Ethiopian Highlands. The model correctly mapped 80% of the existing structures. The developed model was then tested at different sites with different topography. The results show that the developed model is feasible for automated mapping of physical SWC structures. Therefore, the model is useful for predicting and mapping physical SWC structures areas across diverse areas.
Resumo:
Proceedings of the 9th International Conference of the International Soil conservation Organisation (ISCO-9), from 26-30 August 1996 in Bonn, Germany
Resumo:
It is widely recognized that climate change poses significant challenges to the conservation of biodiversity. The need of dealing with relatively rapid and uncertain environmental change calls for the enhancement of adaptive capacity of both biodiversity and conservation management systems. Under the hypothesis that most of the conventional biodiversity conservation tools do not sufficiently stimulate a dynamic protected area management, which takes rapid environmental change into account, we evaluated almost 900 of The Nature Conservancy's site-based conservation action plans. These were elaborated before a so-called climate clinic in 2009, an intensive revision of existing plans and a climate change training of the planning teams. We also compare these results with plans elaborated after the climate clinic. Before 2009, 20% of the CAPs employed the term "climate change" in their description of the site viability, and 45% identified key ecological attributes that are related to climate. 8% of the conservation strategies were directly or indirectly related to climate change adaptation. After 2009, a significantly higher percentage of plans took climate change into account. Our data show that many planning teams face difficulties in integrating climate change in their management and planning. However, technical guidance and concrete training can facilitate management teams learning processes. Arising new tools of adaptive conservation management that explicitly incorporate options for handling future scenarios, vulnerability analyses and risk management into the management process have the potential of further making protected area management more proactive and robust against change.