987 resultados para Water Pollutants.
Resumo:
In this study, we report the first ever large-scale environmental validation of a microbial reporter-based test to measure arsenic concentrations in natural water resources. A bioluminescence-producing arsenic-inducible bacterium based on Escherichia coli was used as the reporter organism. Specific protocols were developed with the goal to avoid the negative influence of iron in groundwater on arsenic availability to the bioreporter cells. A total of 194 groundwater samples were collected in the Red River and Mekong River Delta regions of Vietnam and were analyzed both by atomic absorption spectroscopy (AAS) and by the arsenic bioreporter protocol. The bacterial cells performed well at and above arsenic concentrations in groundwater of 7 microg/L, with an almost linearly proportional increase of the bioluminescence signal between 10 and 100 microg As/L (r2 = 0.997). Comparisons between AAS and arsenic bioreporter determinations gave an overall average of 8.0% false negative and 2.4% false positive identifications for the bioreporter prediction at the WHO recommended acceptable arsenic concentration of 10 microg/L, which is far betterthan the performance of chemical field test kits. Because of the ease of the measurement protocol and the low application cost, the microbiological arsenic test has a great potential in large screening campaigns in Asia and in other areas suffering from arsenic pollution in groundwater resources.
Resumo:
The evaluation of radioactivity accidentally released into the atmosphere involves determining the radioactivity levels of rainwater samples. Rainwater scavenges atmospheric airborne radioactivity in such a way that surface contamination can be deduced from rainfall rate and rainwater radioactivity content. For this purpose, rainwater is usually collected in large surface collectors and then measured by gamma-spectrometry after such treatments as evaporation or iron hydroxide precipitation. We found that collectors can be adapted to accept large surface (diameter 47mm) cartridges containing a strongly acidic resin (Dowex AG 88) which is able to quantitatively extract radioactivity from rainwater, even during heavy rainfall. The resin can then be measured by gamma-spectrometry. The detection limit is 0.1Bq per sample of resin (80g) for (137)Cs. Natural (7)Be and (210)Pb can also be measured and the activity ratio of both radionuclides is comparable with those obtained through iron hydroxide precipitation and air filter measurements. Occasionally (22)Na has also been measured above the detection limit. A comparison between the evaporation method and the resin method demonstrated that 2/3 of (7)Be can be lost during the evaporation process. The resin method is simple and highly efficient at extracting radioactivity. Because of these great advantages, we anticipate it could replace former rainwater determination methods. Moreover, it does not necessitate the transportation of large rainwater volumes to the laboratory.
Resumo:
(241)Pu was determined in slurry samples from a nuclear reactor decommissioning project at the Paul Scherrer Institute (Switzerland). To validate the results, the (241)Pu activities of five samples were determined by LSC (TriCarb and Quantulus) and ICP-MS, with each instrument at a different laboratory. In lack of certified reference materials for (241)Pu, the methods were further validated using the (241)Pu information values of two reference sediments (IAEA-300 and IAEA-384). Excellent agreement with the results was found between LSC and ICP-MS in the nuclear waste slurries and the reference sediments.
Resumo:
A rapid biological method for the determination of the bioavailability of naphthalene was developed and its value as an alternative to extraction-based chemical approaches demonstrated. Genetically engineered whole-cell biosensors are used to determine bioavailable naphthalene and their responses compared with results from Tenax extraction and chemical analysis. Results show a 1:1 correlation between biosensor results and chemical analyses for naphthalene-contaminated model materials and sediments, but the biosensor assay is much faster. This work demonstrates that biosensor technology can perform as well as standard chemical methods, though with some advantages including the inherent biological relevance of the response, rapid response time, and potential for field deployment. A survey of results from this work and the literature shows that bioavailability under non-equilibrium conditions nonetheless correlates well with K(oc) or K(d). A rationale is provided wherein chemical resistance is speculated to be operative.
Resumo:
Tässä tutkimuksessa tarkastellaan kahden yleisen, veden ympäristökuormitusta aiheuttavan kemikaaliryhmän, ligniinin ja humusaineiden, fotokatalyyttistahapetusta (photocatalytic oxidation, PCO) vesiliuoksessa. Fotokatalyyttina käytettiin titaanidioksidia, jota säteilytettiin ultraviolettivalolla. Työssä selvitettiin useiden eri olosuhdeparametrien vaikutusta fotokatalyysiin. Tutkittavia parametreja olivat mm. kontaminanttien alkukonsentraatio, pH, vetyperoksidilisäys, rauta-ionien lisäys, fotokatalyysimenetelmä, fotokatalyytin pintakonsentraatioja titaanidioksidin määrä lasisissa mikropartikkeleissa. Ultraviolettivalon lähteinä käytettiin sekä keinovaloa että auringonvaloa. Katalyytin kantoaineena käytettiin huokoisia lasisia mikropartikkeleita, joiden pintaan kiinnittynyt titaanidioksidi pystyi hyvin vähentämään kontaminanttien määrää vedessä. Fotokatalyysin tehokkuus kasvoi humusaine- ja ligniinikonsentraatioiden kasvaessa. Korkeimmat hapetustehokkuudet kumallakin kontaminantilla saavutettiin neutraaleissa jalievästi emäksisissä olosuhteissa huolimatta siitä, että paras adsorboituminen tapahtui happamissa olosuhteissa. Tämän perusteella voidaan olettaa, että humusaineiden ja ligniinin hapetus tapahtuu pääosin radikaalimekanismilla. Vetyperoksidin lisääminen humusaineliuokseen lisäsi hapettumisnopeutta, vaikka näennäinen hapetustehokkuus ei muuttunut. Tämän perusteella vetyperoksidi hapetti myös humusaineita referenssinäytteessä. Ligniinin fotokatalyyttinen hapettuminen parani vetyperoksidilisäyksellä happamissa olosuhteissa johtuen lisääntyneestä OH-radikaalien muodostumisesta. Ligniini ei hapettunut vetyperoksidilla, jos fotokatalyyttiä ei¿ollut läsnä. Rauta-ionit eivät lisänneet humushappojen fotokatalyyttistähapettumista, mutta Fe2+-ionien lisäys aina konsentraatioon 0.05 mM johti ligniinin hapettumistehokkuuden voimakkaaseen kasvuun. Rauta-ionikonsentraation kasvattaminen edelleen johti ligniinin hapetustehokkuuden alenemiseen.
Resumo:
Combining bacterial bioreporters with microfluidics systems holds great promise for in-field detection of chemical or toxicity targets. Recently we showed how Escherichia coli cells engineered to produce a variant of green fluorescent protein after contact to arsenite and arsenate can be encapsulated in agarose beads and incorporated into a microfluidic chip to create a device for in-field detection of arsenic, a contaminant of well known toxicity and carcinogenicity in potable water both in industrialized and developing countries. Cell-beads stored in the microfluidics chip at -20°C retained inducibility up to one month and we were able to reproducibly discriminate concentrations of 10 and 50 μg arsenite per L (the drinking water standards for European countries and the United States, and for the developing countries, respectively) from the blank in less than 200 minutes. We discuss here the reasons for decreasing bioreporter signal development upon increased storage of cell beads but also show how this decrease can be reduced, leading to a faster detection and a longer lifetime of the device.
Resumo:
Sediments can be natural archives to reconstruct the history of pollutant inputs into coastal areas. This is important to improve management strategies and evaluate the success of pollution control measurements. In this work, the vertical distribution of organochlorine pesticides (DDTs, Lindane, HCB, Heptachlor, Aldrin and Mirex) was determined in a sediment core collected from the Gulf of Batabanó, Cuba, which was dated by using the (210)Pb dating method and validated with the (239,240)Pu fallout peak. Results showed significant changes in sediment accumulation during the last 40 years: recent mass accumulation rates (0.321 g cm(-2) yr(-1)) double those estimated before 1970 (0.15 g cm(-2) yr(-1)). This change matches closely land use change in the region (intense deforestation and regulation of the Colon River in the late 1970s). Among pesticides, only DDTs isomers, Lindane and HCB were detected, and ranged from 0.029 to 0.374 ng g(-1) dw for DDTs, from<0.006 to 0.05 ng g(-1) dw for Lindane and from<0.04 to 0.134 ng g(-1) dw for HCB. Heptachlor, Aldrin and Mirex were below the detection limits (∼0.003 ng g(-1)), indicating that these compounds had a limited application in the Coloma watershed. Pesticide contamination was evident since the 1970s. DDTs and HCB records showed that management strategies, namely the banning the use of organochlorine contaminants, led to a concentration decline. However, Lindane, which was restricted in 1990, can still be found in the watershed. According to NOAA guidelines, pesticides concentrations encountered in these sediments are low and probably not having an adverse effect on sediment dwelling organisms.
Resumo:
The aim of this work was to study the influence of effluent organic matter (EfOM) on micropollutants removal by ozone and UV/H2O2. To perform the experiments, deionized water and municipal secondary effluents (SE) were artificially contaminated with atrazine (ATZ) and treated by the two proposed methods. ATZ concentration, COD and TOC were recorded along the reaction time and used to evaluate EfOM effect on the system efficiency. Results demonstrate that the presence of EfOM can significantly reduce the micropollutant removal rate due to competition of EfOM components to react with radicals and/or molecular ozone. The hydroxyl radical scavenging caused by EfOM was quantified as well as the contribution of molecular ozone and �OH radicals during the ozonation of SE. EfOM components promoted higher inhibition of ATZ oxidation by hydroxyl radicals than by molecular ozone.
Resumo:
Ion mobility spectrometry (IMS) is a straightforward, low cost method for fast and sensitive determination of organic and inorganic analytes. Originally this portable technique was applied to the determination of gas phase compounds in security and military use. Nowadays, IMS has received increasing attention in environmental and biological analysis, and in food quality determination. This thesis consists of literature review of suitable sample preparation and introduction methods for liquid matrices applicable to IMS from its early development stages to date. Thermal desorption, solid phase microextraction (SPME) and membrane extraction were examined in experimental investigations of hazardous aquatic pollutants and potential pollutants. Also the effect of different natural waters on the extraction efficiency was studied, and the utilised IMS data processing methods are discussed. Parameters such as extraction and desorption temperatures, extraction time, SPME fibre depth, SPME fibre type and salt addition were examined for the studied sample preparation and introduction methods. The observed critical parameters were extracting material and temperature. The extraction methods showed time and cost effectiveness because sampling could be performed in single step procedures and from different natural water matrices within a few minutes. Based on these experimental and theoretical studies, the most suitable method to test in the automated monitoring system is membrane extraction. In future an IMS based early warning system for monitoring water pollutants could ensure the safe supply of drinking water. IMS can also be utilised for monitoring natural waters in cases of environmental leakage or chemical accidents. When combined with sophisticated sample introduction methods, IMS possesses the potential for both on-line and on-site identification of analytes in different water matrices.
Resumo:
The aim of this Master’s thesis focused on the oxidation of sodium thiosulfate using non thermal plasma technology as an advance oxidation process (AOP). By using this technology we can degrade certain toxic chemical compounds present in mining wastewaters as pollutants. Different concentrations of thiosulfate and pulse frequencies were used in the PCD experiments and the results in terms of various delivered energies (kWh/m3) and degradation kinetics were compared. Pulsed corona discharge is an energy efficient process compared to other oxidation processes using for the treatment of waste water pollutants. Due to its simplicity and low energy costs make it attractive in the field of waste water treatment processes. This technology of wastewater treatment has been tested mainly on pilot scale level and in future the attempts are to be focus on PCD investigations on larger process scale. In this research work of oxidation of thiosulfate using pulsed corona discharge, the main aim of this research was to study degradation of a studied toxic and not environmental friendly chemical compound. The focus of this research was to study the waste waters coming from the gold mines containing leachate compound thiosulfate. Literature review contained also gold leaching process when cyanide is used as the leachate. Another objective of this work was to compare PCD process with other processes based on their energy efficiencies. In the experimental part two concentrations of sodium thiosulfate, 1000ppm and 400ppm, were used. Two pulse generator frequencies of 833 and 200 pulses per second (pps) were used. The chemical analyses of the samples taken during semi-batch PCD oxidation process were analyzed by ion chromatographic (IC). It is observed after the analyses that among different frequencies and concentrations, the most suitable ones for the process is 200pps and 1000ppm respectively because the pollutants present in the waste water has more time to react with the OH radicals which are the oxidants and the process is energy efficient compared to other frequencies.
Resumo:
Water contaminants have a high potential risk for the health of populations. Protection from toxic effects of environmental water pollutants primarily involves considering the mechanism of low level toxicity and likely biological effects in organisms who live in these polluted waters. The biomarkers assessment of oxidative stress and metabolic alterations to cadmium exposure were evaluated in Nile tilapia, Oreochromis niloticus. The fish were exposed to 0.35, 0.75, 1.5, and 3.0 mg/l concentrations of Cd2+ (CdCl2) in water for 60 days. Fish that survived cadmium exposure showed a metabolic shift and a compensatory development for maintenance of the body weight gain. We observed a decreased glycogen content and decreased glucose uptake in white muscle. Lactate dehydrogenase (LDH) and creatine phosphokinase (CK) activities were also decreased, indicating that the glycolytic capacity was decreased in this tissue. No alterations were observed in total protein content in white muscle due to cadmium exposure suggesting a metabolic shift of carbohydrate metabolism to maintenance of the muscle protein reserve. There was an increase in glucose uptake, CK increased activity, and a clear increase of LDH activity in red muscle of fish with cadmium exposure. Since no alterations were observed in lipoperoxide concentration, while antioxidant enzymes glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were changed in the liver and the red and white muscle of fish with cadmium exposure, we can conclude that oxygen free radicals are produced as a mediator of cadmium toxicity. Resistance development is related with increased activities of antioxidant enzymes, which were important in the protection against cadmium damage, inhibiting lipoperoxide formation. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Uso de macroalgas para avaliação da Poluição orgânica no Rio Preto, noroeste do estado de São Paulo.
Resumo:
The Preto River, located in the northwest of São Paulo State, receives a total wastewater load of 15.150 kg DBO day-1, from which 13.685 kg DBO day-1 (90.5%) corresponds to domestic sewage, and the city of São José do Rio Preto contributes with 12.400 kg DBO day-1 (90% of domestic sewage). During the period from August 1990 through January 1991, monthly sampling was carried out to evaluate the use of macroalgae as bioindicator of organic pollution. Five sampling sites were established along the main river and the following variables were analised: temperature, conductance, turbidity, dissolved oxygen, BOD, COD, total and fecal coliforms, and composition and abundance of macroalgal communities. Data were submitted to analysis of variance, correlation coefficient, cluster analysis (four different approaches) and converted to biological indices (species deficit, relative pollution, saprobity, diversity and uniformity indices). A wide range in water quality was found (particularly for conductance, oxygen, BOD and COD) among the sampling sites, which were classified into three groups (polluted, moderately polluted and unpolluted/weakly polluted). As regards the occurrence and abundance of macroalgae the Rhodophyta were found only in unpolluted or weakly polluted sites, whereas Cyanophyta occurred mostly under high pollution load; the Chlorophyta species were observed under a wide range of conditions. Among the biological indices, saprobity was the most sensitive and correlated to all water variables and the other indices. Cluster analyses showed that the composition of macroalgal communities was consistent with the levels of organic pollution in the Preto River.