937 resultados para Wastewater disposal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

"October 1980."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bibliography: p. 222-229.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Contract: EA99"

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sewage and its microbiology, treatment and disposal are important to the topic of Antarctic wildlife health because disposal of untreated sewage effluent into the Antarctic marine environment is both allowed and commonplace. Human sewage contains enteric bacteria as normal flora, and has the potential to contain parasites, bacteria and viruses which may prove pathogenic to Antarctic wildlife. Treatment can reduce levels of micro-organisms in sewage effluent, but is not a requirement of the Environmental Protocol to the Antarctic Treaty (the Madrid Protocol). In contrast, the deliberate release of non-native organisms for any other reason is prohibited. Hence, disposal of sewage effluent to the marine environment is the only activity routinely undertaken in Antarctica knowing that it will likely result in the release of large numbers of potentially non-native species. When the Madrid Protocol was negotiated, the decision to allow release of untreated sewage effluent was considered the only pragmatic option, as a prohibition would have been costly, and may not have been achievable by many Antarctic operators. In addition, at that time the potential for transmission of pathogens to wildlife from sewage was not emphasised as a significant potential risk. Since then, the transmission of disease-causing agents between species is more widely recognised and it is now timely to consider the risks of continued discharge of sewage effluent in Antarctica and whether there are practical alternatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The onsite treatment of sewage and effluent disposal within the premises is widely prevalent in rural and urban fringe areas due to the general unavailability of reticulated wastewater collection systems. Despite the seemingly low technology of the systems, failure is common and in many cases leading to adverse public health and environmental consequences. Therefore it is important that careful consideration is given to the design and location of onsite sewage treatment systems. It requires an understanding of the factors that influence treatment performance. The use of subsurface effluent absorption systems is the most common form of effluent disposal for onsite sewage treatment and particularly for septic tanks. Additionally in the case of septic tanks, a subsurface disposal system is generally an integral component of the sewage treatment process. Therefore location specific factors will play a key role in this context. The project The primary aims of the research project are: • to relate treatment performance of onsite sewage treatment systems to soil conditions at site; • to identify important areas where there is currently a lack of relevant research knowledge and is in need of further investigation. These tasks were undertaken with the objective of facilitating the development of performance based planning and management strategies for onsite sewage treatment. The primary focus of the research project has been on septic tanks. Therefore by implication the investigation has been confined to subsurface soil absorption systems. The design and treatment processes taking place within the septic tank chamber itself did not form a part of the investigation. In the evaluation to be undertaken, the treatment performance of soil absorption systems will be related to the physico-chemical characteristics of the soil. Five broad categories of soil types have been considered for this purpose. The number of systems investigated was based on the proportionate area of urban development within the Brisbane region located on each soil types. In the initial phase of the investigation, though the majority of the systems evaluated were septic tanks, a small number of aerobic wastewater treatment systems (AWTS) were also included. This was primarily to compare the effluent quality of systems employing different generic treatment processes. It is important to note that the number of different types of systems investigated was relatively small. As such this does not permit a statistical analysis to be undertaken of the results obtained. This is an important issue considering the large number of parameters that can influence treatment performance and their wide variability. The report This report is the second in a series of three reports focussing on the performance evaluation of onsite treatment of sewage. The research project was initiated at the request of the Brisbane City Council. The work undertaken included site investigation and testing of sewage effluent and soil samples taken at distances of 1 and 3 m from the effluent disposal area. The project component discussed in the current report formed the basis for the more detailed investigation undertaken subsequently. The outcomes from the initial studies have been discussed, which enabled the identification of factors to be investigated further. Primarily, this report contains the results of the field monitoring program, the initial analysis undertaken and preliminary conclusions. Field study and outcomes Initially commencing with a list of 252 locations in 17 different suburbs, a total of 22 sites in 21 different locations were monitored. These sites were selected based on predetermined criteria. To obtain house owner agreement to participate in the monitoring study was not an easy task. Six of these sites had to be abandoned subsequently due to various reasons. The remaining sites included eight septic systems with subsurface effluent disposal and treating blackwater or combined black and greywater, two sites treating greywater only and six sites with AWTS. In addition to collecting effluent and soil samples from each site, a detailed field investigation including a series of house owner interviews were also undertaken. Significant observations were made during the field investigations. In addition to site specific observations, the general observations include the following: • Most house owners are unaware of the need for regular maintenance. Sludge removal has not been undertaken in any of the septic tanks monitored. Even in the case of aerated wastewater treatment systems, the regular inspections by the supplier is confined only to the treatment system and does not include the effluent disposal system. This is not a satisfactory situation as the investigations revealed. • In the case of separate greywater systems, only one site had a suitably functioning disposal arrangement. The general practice is to employ a garden hose to siphon the greywater for use in surface irrigation of the garden. • In most sites, the soil profile showed significant lateral percolation of effluent. As such, the flow of effluent to surface water bodies is a distinct possibility. • The need to investigate the subsurface condition to a depth greater than what is required for the standard percolation test was clearly evident. On occasion, seemingly permeable soil was found to have an underlying impermeable soil layer or vice versa. The important outcomes from the testing program include the following: • Though effluent treatment is influenced by the physico-chemical characteristics of the soil, it was not possible to distinguish between the treatment performance of different soil types. This leads to the hypothesis that effluent renovation is significantly influenced by the combination of various physico-chemical parameters rather than single parameters. This would make the processes involved strongly site specific. • Generally the improvement in effluent quality appears to take place only within the initial 1 m of travel and without any appreciable improvement thereafter. This relates only to the degree of improvement obtained and does not imply that this quality is satisfactory. This calls into question the value of adopting setback distances from sensitive water bodies. • Use of AWTS for sewage treatment may provide effluent of higher quality suitable for surface disposal. However on the whole, after a 1-3 m of travel through the subsurface, it was not possible to distinguish any significant differences in quality between those originating from septic tanks and AWTS. • In comparison with effluent quality from a conventional wastewater treatment plant, most systems were found to perform satisfactorily with regards to Total Nitrogen. The success rate was much lower in the case of faecal coliforms. However it is important to note that five of the systems exhibited problems with regards to effluent disposal, resulting in surface flow. This could lead to possible contamination of surface water courses. • The ratio of TDS to EC is about 0.42 whilst the optimum recommended value for use of treated effluent for irrigation should be about 0.64. This would mean a higher salt content in the effluent than what is advisable for use in irrigation. A consequence of this would be the accumulation of salts to a concentration harmful to crops or the landscape unless adequate leaching is present. These relatively high EC values are present even in the case of AWTS where surface irrigation of effluent is being undertaken. However it is important to note that this is not an artefact of the treatment process but rather an indication of the quality of the wastewater generated in the household. This clearly indicates the need for further research to evaluate the suitability of various soil types for the surface irrigation of effluent where the TDS/EC ratio is less than 0.64. • Effluent percolating through the subsurface absorption field may travel in the form of dilute pulses. As such the effluent will move through the soil profile forming fronts of elevated parameter levels. • The downward flow of effluent and leaching of the soil profile is evident in the case of podsolic, lithosol and kransozem soils. Lateral flow of effluent is evident in the case of prairie soils. Gleyed podsolic soils indicate poor drainage and ponding of effluent. In the current phase of the research project, a number of chemical indicators such as EC, pH and chloride concentration were employed as indicators to investigate the extent of effluent flow and to understand how soil renovates effluent. The soil profile, especially texture, structure and moisture regime was examined more in an engineering sense to determine the effect of movement of water into and through the soil. However it is not only the physical characteristics, but the chemical characteristics of the soil also play a key role in the effluent renovation process. Therefore in order to understand the complex processes taking place in a subsurface effluent disposal area, it is important that the identified influential parameters are evaluated using soil chemical concepts. Consequently the primary focus of the next phase of the research project will be to identify linkages between various important parameters. The research thus envisaged will help to develop robust criteria for evaluating the performance of subsurface disposal systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of waste discharge on fishery resources is a matter of great concern. The accepted norm in all environmental impact assessment studies is to avoid areas of high fishery potential while locating a marine outfall. Contemplating on this aspect a case study was conducted in the Amba River estuary before and after the establishment of a petrochemical complex at Nagothane. The treated wastewater from this complex is released through a subsurface outfall after adopting effective control measures for marine disposal of waste. Experimental trawling was done at five locations covering a distance of 30 km during 1990 to 1991. The catch rate within the estuary varied from 0.6 to 255 kg/h (av 24 kg/h). The trend indicated considerable decrease in fishery potential from the mouth of the estuary (av 64 kg/h) to the upstream location (av 11 kg/h). A total of 49 species of fishes, 16 species of prawns, 7 species of crabs and 1 species of lobster were identified from the collections. Number of species gradually increased from the interior segment at Dharamtar (8) to the outer area near Revas (18). A comparison of the quantitative and qualitative nature of the post outfall and pre outfall data revealed only marginal difference. The study indicates that if necessary precautions are taken to render the waste harmless the marine ecology will hardly be affected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lime is a preferred precipitant for the removal of heavy metals from industrial wastewater due to its relatively low cost. To reduce heavy metal concentration to an acceptable level for discharge, in this work, fly ash was added as a seed material to enhance lime precipitation and the suspension was exposed to CO2 gas. The fly ash-lime-carbonation treatment increased the particle size of the precipitate and significantly improved sedimentation of sludge and the efficiency of heavy metal removal. The residual concentrations of chromium, copper, lead and zinc in effluents can be reduced to (mg L-1) 0.08, 0.14, 0.03 and 0.45, respectively. Examination of the precipitates by XRD and thermal analysis techniques showed that calcium-heavy metal double hydroxides and carbonates were present. The precipitate agglomerated and hardened naturally, facilitating disposal without the need for additional solidification/stabilization measures prior to landfill. It is suggested that fly ash, lime and CO2, captured directly from flue gas, may have potential as a method for wastewater treatment. This method could allow the ex-situ sequestration of CO2, particularly where flue-gas derived CO2 is available near wastewater treatment facilities. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work involved the treatment of industrial wastewater from a nylon carpet printing plant which currently receives no treatment and is discharged to sea. As nylon is particularly difficult to dye, acid dyes are required for successful coloration and cause major problems with the plant's effluent disposal in terms of color removal. Granular activated carbon Filtrasorb 400 was used to treat a ternary solution of acid dyes and the process plant effluent containing the dyes in a fixed-bed column system. Experimental data were correlated using the bed depth service time (BDST) model to previously published work by the authors for single dye adsorption. The results were expressed in terms of the BDST adsorption capacity, in milligrams of adsorbate per gram of adsorbent, and indicated that there was a 12-25% decrease iri adsorption capacity in the ternary system compared to the single component system; This reduction has been attributed to competitive adsorption occurring in the ternary component system. Dye adsorption from the process plant effluent showed an approximate 65% decrease in adsorption capacity compared to the ternary solution system. This has been attributed to interference caused by the other colorless textile effluent pollutants found in the process wastewater. A chemical oxygen demand analysis on these components indicated that the dyes accounted for only 14% of the total oxygen demand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to develop an input/output mass balance to predict phosphorus retention in a five pond constructed wetland system (CWS) at Greenmount Farm, County Antrim, Northern Ireland. The mass balance was created using 14-months of flow data collected at inflow and outflow points on a weekly basis. Balance outputs were correlated with meteorological parameters, such as daily air temperature and hydrological flow, recorded daily onsite. The mass balance showed that phosphorus retention within the system exceeded phosphorus release, illustrating the success of constructed wetland systems to remove nutrients from agricultural effluent from a dairy farm. Pond 5 showed the greatest relative retention of 86%. Comparison of retention and mean air temperature highlighted a striking difference in trends between up-gradient and down-gradient ponds, with Ponds 1 and 2 displaying a positive quadratic relationship and ponds 3 through 5 displaying a negative quadratic relationship.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constructed wetland systems (CWS) have been used as a low cost bio-filtration system to treat farm wastewater. While studies have shown that CWS are efficient in removing organic compounds and pathogens, there is limited data on the presence of hormones in this type of treatment system. The objective of this study was to evaluate the ability of the CWS to reduce estrogenic and androgenic hormone concentration in dairy wastewater. This was achieved through a year long study on dairy wastewater samples obtained froma surface flow CWS. Analysis of hormonal levels was performed using a solid phase extraction (SPE) sample clean-up method, combined with reporter gene assays (RGAs) which incorporate relevant receptors capable of measuring total estrogenic or androgenic concentrations as low as 0.24 ng L1 and 6.9 ng L1 respectively. Monthly analysis showed a mean removal efficiency for estrogens of 95.2%, corresponding to an average residual concentration of 3.2 ng L1 17b-estradiol equivalent (EEQ), below the proposed lowest observable effect concentration (LOEC) of 10 ng L1. However, for one month a peak EEQ concentration of 115 ng L1 was only reduced to 18.8 ng L1. The mean androgenic activity peaked at 360 ng L1 and a removal efficiency of 92.1% left an average residual concentration of 32.3 ng L1 testosterone equivalent (TEQ). The results obtained demonstrate that this type of CWS is an efficient system for the treatment of hormones in dairy wastewater. However, additional design improvements may be required to further enhance removal efficiency of peak hormone concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective implementation of the Water Framework Directive requires a reappraisal of conventional approaches to water quality monitoring. Quantifying the impact of domestic wastewater treatment systems (DWWTS) in Irish catchments is further complicated by high levels of natural heterogeneity. This paper presents a numerical model that couples attenuation to flow along different hydrological pathways contributing to river discharge; this permits estimation of the impact of DWWTS to overall nutrient fluxes under a range of geological conditions. Preliminary results suggest high levels of attenuation experienced
before DWWTS effluent reaches bedrock play a significant role in reducing its ecological impact on aquatic receptors. Conversely, low levels of attenuation in systems discharging directly to surface water may affect water quality more significantly, particularly during prolonged dry periods in areas underlain by low productivity aquifers (>60% of Ireland), where dilution capacity is limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poorly functioning on-site wastewater treatment systems (OSWTS) can be among the many sources of pollution to groundwater and surface water, which are of critical concern owing to potential human and ecological health risks. An investigation into the effects of on-site wastewater treatment systems (OSWTS) on surface water quality has been undertaken at several sites within a catchment in Co. Monaghan. The study sites were located in areas of 'low’ permeability, suggesting that run-off usually dominates over infiltration. Poor treatment performance of OSWTS within the catchment were found to be the result of several factors, including location in areas with unsuitable soil and site characteristics, incorrect installation, poor maintenance and inappropriate operation by the home owner.