936 resultados para Waste heat recovery
Resumo:
The internal combustion (IC) engines exploits only about 30% of the chemical energy ejected through combustion, whereas the remaining part is rejected by means of cooling system and exhausted gas. Nowadays, a major global concern is finding sustainable solutions for better fuel economy which in turn results in a decrease of carbon dioxide (CO2) emissions. The Waste Heat Recovery (WHR) is one of the most promising techniques to increase the overall efficiency of a vehicle system, allowing the recovery of the heat rejected by the exhaust and cooling systems. In this context, Organic Rankine Cycles (ORCs) are widely recognized as a potential technology to exploit the heat rejected by engines to produce electricity. The aim of the present paper is to investigate a WHR system, designed to collect both coolant and exhausted gas heats, coupled with an ORC cycle for vehicle applications. In particular, a coolant heat exchanger (CLT) allows the heat exchange between the water coolant and the ORC working fluid, whereas the exhausted gas heat is recovered by using a secondary circuit with diathermic oil. By using an in-house numerical model, a wide range of working conditions and ORC design parameters are investigated. In particular, the analyses are focused on the regenerator location inside the ORC circuits. Five organic fluids, working in both subcritical and supercritical conditions, have been selected in order to detect the most suitable configuration in terms of energy and exergy efficiencies.
Resumo:
The United States transportation industry is predicted to consume approximately 13 million barrels of liquid fuel per day by 2025. If one percent of the fuel energy were salvaged through waste heat recovery, there would be a reduction of 130 thousand barrels of liquid fuel per day. This dissertation focuses on automotive waste heat recovery techniques with an emphasis on two novel techniques. The first technique investigated was a combination coolant and exhaust-based Rankine cycle system, which utilized a patented piston-in-piston engine technology. The research scope included a simulation of the maximum mass flow rate of steam (700 K and 5.5 MPa) from two heat exchangers, the potential power generation from the secondary piston steam chambers, and the resulting steam quality within the steam chamber. The secondary piston chamber provided supplemental steam power strokes during the engine's compression and exhaust strokes to reduce the pumping work of the engine. A Class-8 diesel engine, operating at 1,500 RPM at full load, had a maximum increase in the brake fuel conversion efficiency of 3.1%. The second technique investigated the implementation of thermoelectric generators on the outer cylinder walls of a liquid-cooled internal combustion engine. The research scope focused on the energy generation, fuel energy distribution, and cylinder wall temperatures. The analysis was conducted over a range of engine speeds and loads in a two cylinder, 19.4 kW, liquid-cooled, spark-ignition engine. The cylinder wall temperatures increased by 17% to 44% which correlated well to the 4.3% to 9.5% decrease in coolant heat transfer. Only 23.3% to 28.2% of the heat transfer to the coolant was transferred through the TEG and TEG surrogate material. The gross indicated work decreased by 0.4% to 1.0%. The exhaust gas energy decreased by 0.8% to 5.9%. Due to coolant contamination, the TEG output was not able to be obtained. TEG output was predicted from cylinder wall temperatures and manufacturer documentation, which was less than 0.1% of the cumulative heat release. Higher TEG conversion efficiencies, combined with greater control of heat transfer paths, would be needed to improve energy output and make this a viable waste heat recovery technique.
Resumo:
Hot rolling process is heat input process. The heat energy in hot rolled steel coils can be utilized. At SSAB Strip Product Borlänge when the hot rolled steel coils came out of the hot rolling mill they are at the temperature range of 500°C to 800°C. Heat energy contained by the one hot rolled steel coil is about 1981Kwh whereas the total heat energy for the year 2008 is 230 GWh/year.The potential of heat is too much but the heat dissipation rate is too slow. Different factors on which heat dissipation rate depends are discussed.Three suggestions are proposed to collect the waste heat from hot rolled steel coils.The 2nd proposal in which water basin is suggested would help not only to collect the waste heat but to decrease in the cooling time.
Resumo:
November 1979.
Resumo:
Mode of access: Internet.
Resumo:
A comprehensive survey of industrial sites and heat recovery products revealed gaps between equipment that was required and that which was available. Two heat recovery products were developed to fill those gaps: a gas-to-gas modular heat recovery unit; a gas-to-liquid exhaust gas heat exchanger. The former provided an entire heat recovery system in one unit. It was specifically designed to overcome the problems associated with existing component system of large design commitment, extensive installation and incompatibility between parts. The unit was intended to recover heat from multiple waste gas sources and, in particular, from baking ovens. A survey of the baking industry defined typical waste gas temperatures and flow rates, around which the unit was designed. The second unit was designed to recover heat from the exhaust gases of small diesel engines. The developed unit differed from existing designs by having a negligible effect on engine performance. In marketing terms these products are conceptual opposites. The first, a 'product-push' product generated from site and product surveys, required marketing following design. The second, a 'market-pull' product, resulted from a specific user need; this had a captive market and did not require marketing. Here marketing was replaced by commercial aspects including the protection of ideas, contracting, tendering and insurance requirements. These two product development routes are compared and contrasted. As a general conclusion this work suggests that it can be beneficial for small companies (as was the sponsor of this project) to undertake projects of the market-pull type. Generally they have a higher probability of success and are less capital intensive than their product-push counterparts. Development revealed shortcomings in three other fields: British Standards governing heat exchangers; financial assessment of energy saving schemes; degree day procedure of calculating energy savings. Methods are proposed to overcome these shortcomings.
Resumo:
This paper offers numerical modelling of a waste heat recovery system. A thin layer of metal foam is attached to a cold plate to absorb heat from hot gases leaving the system. The heat transferred from the exhaust gas is then transferred to a cold liquid flowing in a secondary loop. Two different foam PPI (Pores Per Inch) values are examined over a range of fluid velocities. Numerical results are then compared to both experimental data and theoretical results available in the literature. Challenges in getting the simulation results to match those of the experiments are addressed and discussed in detail. In particular, interface boundary conditions specified between a porous layer and a fluid layer are investigated. While physically one expects much lower fluid velocity in the pores compared to that of free flow, capturing this sharp gradient at the interface can add to the difficulties of numerical simulation. The existing models in the literature are modified by considering the pressure gradient inside and outside the foam. Comparisons against the numerical modelling are presented. Finally, based on experimentally-validated numerical results, thermo-hydraulic performance of foam heat exchangers as waste heat recovery units is discussed with the main goal of reducing the excess pressure drop and maximising the amount of heat that can be recovered from the hot gas stream.
Resumo:
Desalination is considered one of the most suitable areas for the utilization of solar energy, as there are many places in the world where abundant supply of solar energy is available and also there is a great demand for fresh water. An integrated solar heat pump desalination system has been developed at the National University of Singapore. The system also offers the opportunity of water heating and drying utilizing solar, ambient energy and waste heat from air conditioning system, which is conventionally dumped into the environment causing global warming. Desalination is carried out by making use of a single effect of Multi-Effect Distillation (MED) system. Within the desalination chamber, both fl ashing and evaporation of saline water take place. The maximum Coefficient of Performance (COP) of the heat pump system was around 5.8. In the integrated system, the maximum fresh water production rate was 9.6 l h−1 and a Performance Ratio (PR) of 1.2. For only desalination, the system has the potential to produce a maximum of 30 l h−1 of fresh water.
Resumo:
The low temperature operation of a heat pump makes it an excellent match for the use of solar energy. At the National University of Singapore, a solar assisted heat pump system has been designed, fabricated and installed to provide water heating and drying. The system also utilizes the air con waste heat, which would normally be released to atmosphere adding to global warming. Experimental results show that the twophase unglazed solar evaporator-collector, instead of losing energy to the ambient, gained a significant amount due to low operating temperature of the collector. As a result, the collector efficiency attains a value greater than 1, when conventional collector equations are used. With this evaporator-collector, the system can be operated even in the absence of solar irradiation. The waste heat was collected from an air-con system, which maintained a room at 20-22 oC. In the condenser side, water at 60 oC was produced at a rate of 3 liter/minute and the drying capacity was 2.2kg/hour. Maximum COP of the system was found to be about 5.5.
Resumo:
Hybrid vehicles can use energy storage systems to disconnect the engine from the driving wheels of the vehicle. This enables the engine to be run closer to its optimum operating condition, but fuel energy is still wasted through the exhaust system as heat. The use of a turbogenerator on the exhaust line addresses this problem by capturing some of the otherwise wasted heat and converting it into useful electrical energy.
This paper outlines the work undertaken to model the engine of a diesel-electric hybrid bus, coupled with a hybrid powertrain model which analysed the performance of a hybrid vehicle over a drive-cycle. The distribution of the turbogenerator power was analysed along with the effect on the fuel consumption of the bus. This showed that including the turbogenerator produced a 2.4% reduction in fuel consumption over a typical drive-cycle.
The hybrid bus generator was then optimised to improve the performance of the combined vehicle/engine package and the turbogenerator was then shown to offer a 3.0% reduction in fuel consumption. The financial benefits of using the turbogenerator were also considered in terms of fuel savings for operators. For an average bus, a turbogenerator could reduce fuel costs by around £1200 per year.
Resumo:
With the building sector accounting for around 40% of the total energy consumption in the EU, energy efficiency in buildings is and continues to be an important issue. Great progress has been made in reducing the energy consumption in new buildings, but the large stock of existing buildings with poor energy performance is probably an even more crucial area of focus. This thesis deals with energy efficiency measures that can be suitable for renovation of existing houses, particularly low-temperature heating systems and ventilation systems with heat recovery. The energy performance, environmental impact and costs are evaluated for a range of system combinations, for small and large houses with various heating demands and for different climates in Europe. The results were derived through simulation with energy calculation tools. Low-temperature heating and air heat recovery were both found to be promising with regard to increasing energy efficiency in European houses. These solutions proved particularly effective in Northern Europe as low-temperature heating and air heat recovery have a greater impact in cold climates and on houses with high heating demands. The performance of heat pumps, both with outdoor air and exhaust air, was seen to improve with low-temperature heating. The choice between an exhaust air heat pump and a ventilation system with heat recovery is likely to depend on case specific conditions, but both choices are more cost-effective and have a lower environmental impact than systems without heat recovery. The advantage of the heat pump is that it can be used all year round, given that it produces DHW. Economic and environmental aspects of energy efficiency measures do not always harmonize. On the one hand, lower costs can sometimes mean larger environmental impact; on the other hand there can be divergence between different environmental aspects. This makes it difficult to define financial subsidies to promote energy efficiency measures.
Resumo:
Mode of access: Internet.
Resumo:
"June 1983."