930 resultados para Warning devices.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Federal Highway Administration, Traffic Systems Division, Washington, D.C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Federal Highway Administration, Traffic Systems Division, Washington, D.C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Federal Highway Administration, Traffic Systems Division, Washington, D.C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Railway level crossings are amongst the most complex of road safety control systems, due to the conflicts between road vehicles and rail infrastructure, trains and train operations. Driver behaviour at railway crossings is the major collision factor. The main objective of the present paper was to evaluate the existing conventional warning devices in relation to driver behaviour. The common conventional warning devices in Australia are a stop sign (passive), flashing lights and a half boom-barrier with flashing lights (active). The data were collected using two approaches, namely: field video recordings at selected sites and a driving simulator in a laboratory. This paper describes and compares the driver response results from both the field survey and the driving simulator. The conclusion drawn is that different types of warning systems resulted in varying driver responses at crossings. The results showed that on average driver responses to passive crossings were poor when compared to active ones. The field results were consistent with the simulator results for the existing conventional warning devices and hence they may be used to calibrate the simulator for further evaluation of alternative warning systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the challenges of making a case for the adoption of low cost railway level crossings in Australia. Several issues are discussed in this paper including legal issues associated with the treatment of low-exposure passive crossings with low cost level crossing warning devices (LCLCWDs); principles of operation and deployment for LCLCWDs; and technical and human factors aspects of safety and availability. The Cooperative Research Centre (CRC) for Rail Innovation’s affordable level crossings project aims to address a number of these technical and human factors issues through research and field trials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Cooperative Research Centre (CRC) for Rail Innovation is conducting a tranche of industry-led research projects looking into safer rail level crossings. This paper will provide an overview of the Affordable Level Crossings project, a project that is performing research in both engineering and human factors aspects of low-cost level crossing warning devices (LCLCWDs), and is facilitating a comparative trial of these devices over a period of 12 months in several jurisdictions. Low-cost level crossing warning devices (LCLCWDs) are characterised by the use of alternative technologies for high cost components including train detection and connectivity (e.g. radar, acoustic, magnetic induction train detection systems and wireless connectivity replacing traditional track circuits and wiring). These devices often make use of solar power where mains power is not available, and aim to make substantial savings in lifecycle costs. The project involves trialling low-cost level crossing warning devices in shadow-mode, where devices are installed without the road-user interface at a number of existing level crossing sites that are already equipped with conventional active warning systems. It may be possible that the deployment of lower-cost devices can provide a significantly larger safety benefit over the network than a deployment of expensive conventional devices, as the lower cost would allow more passive level crossing sites to be upgraded with the same capital investment. The project will investigate reliability and safety integrity issues of the low-cost devices, as well as evaluate lifecycle costs and investigate human factors issues related to warning reliability. This paper will focus on the requirements and safety issues of LCLCWDs, and will provide an overview of the Rail CRC projects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low-cost level crossings are often criticized as being unsafe. Does a SIL (safety integrity level) rating make the railway crossing any safer? This paper discusses how a supporting argument might be made for low-cost level crossing warning devices with lower levels of safety integrity and issues such as risk tolerability and derivation of tolerable hazard rates for system-level hazards. As part of the design of such systems according to fail-safe principles, the paper considers the assumptions around the pre-defined safe states of existing warning devices and how human factors issues around such states can give rise to additional hazards.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluid Infrastructure: Landscape Architecture Exhibition: This exhibition showcases the work of 4th Year undergraduate landscape architecture students in response to the 2011 Queensland floods through five installations: Systima Fluid Flux Flex Fluid Connectivity The Floods Verge Fluid Evolution The focus of these installations is the post-flood conditions of Brisbane’s riverside public infrastructure, within a scenario of flood as a normalised event. It recognises that within this scenario, parts of this city cannot be described as definitively ‘land’ or ‘water,’ but are best described as ‘fluid terrains’(Mathur, A. and Da Cunha, D. 2006). The landscape design propositions within the five installations include public transport diversification (RiverRats) schemes, greenspace elevations, ephemeral gardens and evolving landscapes, creative interpretation and warning devices and systems. These propositions do not resist fluid conditions, but work with them to propose a more resilient urban river landscape than Brisbane currently has. This QUT exhibition was developed as part of the 2011 Flood of Ideas Project (http://www.floodofideas.org.au) in partnership with Healthy Waterways (Water by Design), State Library of Queensland (The Edge), Brisbane City Council, Australian Institute of Architects, University of Queensland, Green Cross Australia, Stormwater Industry Association.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The introduction of safety technologies into complex socio-technical systems requires an integrated and holistic approach to HF and engineering, considering the effects of failures not only within system boundaries, but also at the interfaces with other systems and humans. Level crossing warning devices are examples of such systems where technically safe states within the system boundary can influence road user performance, giving rise to other hazards that degrade safety of the system. Chris will discuss the challenges that have been encountered to date in developing a safety argument in support of low-cost level crossing warning devices. The design and failure modes of level crossing warning devices are known to have a significant influence on road user performance; however, quantifying this effect is one of the ongoing challenges in determining appropriate reliability and availability targets for low-cost level crossing warning devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Level crossing risk continues to be a significant safety concern for the security of rail operations around the world. Over the last decade or so, a third of railway related fatalities occurred as a direct result of collisions between road and rail vehicles in Australia. Importantly, nearly half of these collisions occurred at railway level crossings with no active protection, such as flashing lights or boom barriers. Current practice is to upgrade level crossings that have no active protection. However, the total number of level crossings found across Australia exceed 23,500, and targeting the proportion of these that are considered high risk (e.g. public crossings with passive controls) would cost in excess of AU$3.25 billion based on equipment, installation and commissioning costs of warning devices that are currently type approved. Level crossing warning devices that are low-cost provide a potentially effective control for reducing risk; however, over the last decade, there have been significant barriers and legal issues in both Australia and the US that have foreshadowed their adoption. These devices are designed to have significantly lower lifecycle costs compared with traditional warning devices. They often make use of use of alternative technologies for train detection, wireless connectivity and solar energy supply. This paper describes the barriers that have been encountered for the adoption of these devices in Australia, including the challenges associated with: (1) determining requisite safety levels for such devices; (2) legal issues relating to duty of care obligations of railway operators; and (3) issues of Tort liability around the use of less than fail-safe equipment. This paper provides an overview of a comprehensive safety justification that was developed as part of a project funded by a collaborative rail research initiative established by the Australian government, and describes the conceptual framework and processes being used to justify its adoption. The paper provides a summary of key points from peer review and discusses prospective barriers that may need to be overcome for future adoption. A successful outcome from this process would result in the development of a guideline for decision-making, providing a precedence for adopting low-cost level crossing warning devices in other parts of the world. The framework described in this paper also provides relevance to the review and adoption of analogous technologies in rail and other safety critical industries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the adverse effects of familiarity and human factors issues associated with the reliability of low-cost warning devices at level crossings. The driving simulator study featured a repetitive, low workload, monotonous driving task in which there were no failures of the level crossing (control) or prolonged or intermittent right-side failures (where the device reverts to a safe failure mode). The results of the experiment provided mixed support for the familiarity hypothesis. Four of the 23 participants collided with the train when it first appeared on trial 10 but safety margins increased from the first train to the next presentation of a train (trial 12). Contrary to expectations, the safety margins decreased with repeated right-side failure only for the intermittent condition. The limited head movement data showed that participants in the prolonged failure condition were more likely to turn their head to check for trains in the right-side failure trials than in earlier trials where there was no signal and no train. Few control participants turned their head to check for trains when no signal was presented. This research highlights the need to consider repetitive tasks and workload in experimental design and accident investigation at railway level crossings.