862 resultados para WHITE ELECTROLUMINESCENCE
Resumo:
The dopant/host methodology, which enables efficient tuning of emission color and enhancement of the electroluminescence (EL) efficiency of organic light emitting diodes (OLEDs) based on small molecules, is applied to the design and synthesis of highly efficient green light emitting polymers. Highly efficient green light emitting polymers were obtained by covalently attaching just 0.3-1.0 mol% of a green dopant, 4-(N,N-diphenyl) amino-1,8-naphthaliniide (DPAN), to the pendant chain of polyfluorene (the host). The polymers emit green light and exhibit a high photoluminescence (PL) quantum yield of Lip to 0.96 in solid films, which is attributed to the energy transfer from the polyfluorene host to the DPAN dopant unit. Single layer devices (device configuration: ITO/PEDOT/Polymer/Ca/Al) of the polymers exhibit a turn on voltage of 4.8 V, luminance efficiency of 7.43 cd A(-1), power efficiency of 2.96 lm W-1 and CIE coordinates at (0.26, 0.58). The good device performance can be attributed to the energy transfer and charge trapping from the polyfluorene host to the DPAN dopant unit as well as the molecular dispersion of the dopant in the host.
Resumo:
A bright blue boron complex BPh2(pybm) containing 2-(2-pyridyl)benzimidazole ligand was designed and synthesized by using N, N-bidentate ligand instead of N, O-bidentate one such as 8-quinolinol. For three-layer LED devices with the configuration of ITO/NPB/BPh2(pybm)/Alq(3)/LiF/Al, the white light emission covering the whole visible region from 400 to 750 nm with the maximum brightness of 110 cd/m(2) and the luminous efficiency of 0.8 cd/A was observed.
ELECTROLUMINESCENCE AND IMPACT IONIZATION PHENOMENA IN A DOUBLE-BARRIER RESONANT TUNNELING STRUCTURE
Resumo:
White-light emission is achieved from a single layer of diblock copolymer micelles containing green- and red-light-emitting dyes in the separate micellar cores and blue-light-emitting polymer around their periphery, in which fluorescence resonance energy transfer between fluorophores is inhibited due to micelle isolation, resulting in simultaneous emission of these three species.
Resumo:
By incorporating two phosphorescent dyes, namely, iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C-2']picolinate (Flrpic) for blue emission and bis(2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1 H-benzoimidazol-N,C-3) iridium(acetylacetonate) ((fbi)(2)Ir(acac)) for orange emission, into a single-energy well-like emissive layer, an extremely high-efficiency white organic light-emitting diode (WOLED) with excellent color stability is demonstrated. This device can achieve a peak forward-viewing power efficiency of 42.5 lm W-1, corresponding to an external quantum efficiency (EQE) of 19.3% and a current efficiency of 52.8 cd A(-1). Systematic studies of the dopants, host and dopant-doped host films in terms of photophysical properties (including absorption, photoluminescence, and excitation spectra), transient photoluminescence, current density-voltage characteristics, and temperature-dependent electroluminescence spectra are subsequently performed, from which it is concluded that the emission natures of Flrpic and (fbi)(2)Ir(acac) are, respectively, host-guest energy transfer and a direct exciton formation process. These two parallel pathways serve to channel the overall excitons to both dopants, greatly reducing unfavorable energy losses.
Resumo:
Two simple triphenylamine/oxadiazole derivatives were synthesized and fully characterized; their multifunctionality as highly efficient non-doped blue fluorescence, excellent red phosphorescent host and single-doped two-color based white OLEDs has been demonstrated.
Resumo:
A series of block copolymers containing nonconjugated spacer and 3D pi-pi stacking structure with simultaneous blue-, green-, and yellow-emitting units has been synthesized and characterized. The dependence of the energy transfer and electroluminescence (EL) properties of these block copolymers on the contents of oligo(phenylenevinylene)s has been investigated. The block copolymer (GEO8-BEO-YEO4) with 98.8% blue-emitting oligomer (BEO), 0.8% green-emitting oligomer (GEO), and 0.4% yellow-emitting oligomer (YEO) showed the best electroluminescent performance, exhibiting a maximum luminance of 2309 cd/m(2) and efficiency of 0.34 cd/A. The single-layer-polymer light-emitting diodes device based on GEO2-BEO-YEO4 emitted greenish white light with the CIE coordinates of (0.26, 0.37) at 10 V. The synergetic effect of the efficient energy transfer and 3D pi-pi stack of these block copolymers on the photoiuminescent and electroluminescent properties are investigated.
Resumo:
Efficient multilayer white polymer light-emitting diodes (WPLEDs) with aluminum cathodes are fabricated. The multilayer structure is composed of a water soluble hole-injection layer, a toluene-soluble emissive layer, and an alcohol-soluble emissive layer. The polarity difference of the solvents used for spin coating these polymers allows for realization of the multilayer polymer structure. The recombination zone confined at the interface of the two emissive polymers avoids exciton quenching by electrodes, and white emission is realized by harvesting photons emitted from the two emissive polymers. A maximum luminous efficiency of 16.9 cd/A and a power efficiency of 11.1 lm/W are achieved for this WPLED.
Resumo:
The synthesis and photophysical studies of several multifunctional phosphorescent iridium(III) cyclometalated complexes consisting of the hole-transporting carbazole and fluorene-based 2-phenylpyridine moieties are reported. All of them are isolated as thermally and morphological stable amorphous solids. Extension of the pi-conjugation through incorporation of electron- pushing carbazole units to the fluorene fragment leads to bathochromic shifts in the emission profile, increases the highest oc- cupied molecular orbital levels and improves the charge balance in the resulting complexes because of the propensity of the carbazole unit to facilitate hole transport. These iridium-based triplet emitters give a strong orange phosphorescence light at room temperature with relatively short lifetimes in the solution phase. The photo- and electroluminescence properties of these phosphorescent carbazolylfluorene-functionalized metalated complexes have been studied in terms of the coordinating position of carbazole to the fluorene unit. Organic light-emitting diodes (OLEDs) using these complexes as the solution-processed emissive layers have been fabricated which show very high efficiencies even without the need for the typical hole-transporting layer.I These orange-emitting devices can produce a maximum current efficiency of similar to 30 cd A(-1) corresponding to an external quantum efficiency of similar to 10 % ph/el (photons per electron) and a power efficiency of similar to 14 Im W-1.
Resumo:
A new dysprosium complex Dy(PM)(3)(TP)(2) [where PM = 1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone and TP = triphenyl phosphine oxide] was synthesized, and its single-crystal structure was also studied. Its photophysical properties were studied by absorption spectra, emission spectra, fluorescence quantum efficiency, and decay time of the f-f transition of the Dy3+ ion. In addition, the antenna effect was introduced to discuss the energy transfer mechanism between the ligand and the central Dy3+ ion. Finally, a series of devices with various structures was fabricated to investigate the electroluminescence (EL) performances of Dy(PM)(3)(TP)(2). The best device with the structure ITO/CuPc 15 nm/Dy complex 70 nm/BCP 20 nm/AlQ 30 nm/LiF 1 nm/Al 100 nm exhibits a maximum brightness of 524 cd/m(2), a current efficiency of 0.73 cd/A, and a power efficiency of 0.16 lm/W, which means that a great improvement in the performances of the device was obtained as compared to the results reported in published literature. Being identical to the PL spectrum, the EL spectrum of the complex also shows characteristic emissions of the Dy3+ ion, which consist of a yellow band at 572 nm and a blue emission band at 480 nm corresponding to the F-4(9/2)-H-6(13/2) and F-4(9/2)-H-6(15/2) transition of the Dy3+ ion, respectively. Consequently, an appropriate tuning of the blue/yellow intensity ratio can be presumed to accomplish a white luminescent emission.
Resumo:
Two orange phosphorescent iridium complex monomers, 9-hexyl-9-(iridium (III)bis(2-(4'-fluorophenyl)-4-phenylquinoline-N, C-2')(tetradecanedionate-11,13))-2,7-dibromofluorene (Br-PIr) and 9-hexyl-9-(iridium(III)bis(2-(4'-fluorophenyl)-4-methylquinoline-N, C-2')(tetradecanedionate-11,13))-2,7-dibromofluorene (Br-MIr), were successfully synthesized. The Suzuki polycondensation of 2,7-bis(trimethylene boronate)-9,9-dioctylfluorene with 2,7-dibromo-9,9-dioetylfluorene and Br-Plr or Br-MIr afforded two series of copolymers, PIrPFs and MIrPFs, in good yields, in which the concentrations of the phosphorescent moieties were kept small (0.5-3 mol % feed ratio) to realize incomplete energy transfer. The photoluminescence (PL) of the copolymers showed blue- and orange-emission peaks. A white-light-emitting diode with a configuration of indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/PIr05PF (0.5 mol % feed ratio of Br-PIr)/Ca/Al exhibited a luminous efficiency of 4.49 cd/A and a power efficiency of 2.35 lm/W at 6.0 V with Commission Internationale de L'Eclairage (CIE) coordinates of (0.46, 0.33). The CIE coordinates were improved to (0.34, 0.33) when copolymer MIr10PF (1.0 mol % feed ratio of Br-MIr) was employed as the white-emissive layer. The strong orange emission in the electroluminescence spectra in comparison with PL for these kinds of polymers was attributed to the additional contribution of charge trapping in the phosphorescent dopants.
Resumo:
Light-emitting diodes exhibiting efficient pure-white-light electroluminescence have been successfully developed by using a single polymer: polyfluorene derivatives with 1,8-naphthalimide chromophores chemically doped onto the polyfluorene backbones. By adjusting the emission wavelength of the 1,8-naphthalimide components and optimizing the relative content of 1,8-naphthalimide derivatives in the resulting polymers, white-light electroluminescence from a single polymer, as opposed to a polymer blend, has been obtained in a device with a configuration of indium tin oxide/poly(3,4-ethyleiledioxythiophene)(50 nm)/polymer(80 nm)/Ca(10 nm)/Al(100 nm). The device exhibits Commission Internationale de I'Eclairage coordinates of (0.32,0.36), a maximum brightness of 11900 cd m(-2), a current efficiency of 3.8 cd A(-1), a power efficiency of 2.0 lm W-1. an external quantum efficiency of 1.50 %, and quite stable color coordinates at different driving voltages, even at high luminances of over 5000 cd m(-2).
Resumo:
The efficient white polymeric light-emitting diodes based on a white emissive polymer doped with a red phosphorescent dopant were fabricated by spin-coating method. The emission spectrum of the device is broadened to cover the full visible region by doping the red phosphorescent dye and thereby realizes white emission with high color-rendering index (CRI). By controlling the contents of the doped electron-transporting 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole and the red phosphorescent dopant, a luminous efficiency as high as 5.3 cd/A and a power efficiency of 3 lm/W were obtained with a CRI of 92.