916 resultados para WEATHERING PROFILES
Resumo:
A profluorescent nitroxide possessing an isoindoline nitroxide moiety linked to a perylene fluorophore was developed to monitor radical mediated degradation of melamine-formaldehyde crosslinked polyester coil coatings in an industry standard accelerated weathering tester. Trapping of polyester-derived radicals (most likely C-radicals) that are generated during polymer degradation leads to fluorescent closed-shell alkoxy amines, which was used to obtain time-dependent degradation profiles to assess the relative stability of different polyesters towards weathering. The nitroxide probe couples excellent thermal stability and satisfactory photostability with high sensitivity and enables detection of free radical damage in polyesters under conditions that mimic exposure to the environment on a time scale of hours rather than months or years required by other testing methods. There are indications that the profluorescent nitroxide undergoes partial photo-degradation in the absence of polymer-derived radicals. Unexpectedly, it was also found that UV-induced fragmentation of the NO–C bond in closed-shell alkoxy amines leads to regeneration of the profluorescent nitroxide and the respective C-radical. The maximum fluorescence intensity that could be achieved with a given probe concentration is therefore not only determined by the amount of polyester radicals formed during accelerated weathering, but also by the light-driven side reactions of the profluorescent nitroxide and the corresponding alkoxy amine radical trapping products. Studies to determine the optimum probe concentration in the polymer matrix revealed that aggregation and re-absorption effects lowered the fluorescence intensity at higher concentrations of the profluorescent nitroxide, but too low probe concentrations, where these effects would be avoided, were not sufficient to trap the amount of polyester radicals formed upon weathering. The optimized experimental conditions were used to assess the impact of temperature and UV irradiance on polymer degradation during accelerated weathering.
Resumo:
An overwhelming majority of all the research on soil phosphorus (P) has been carried out with soil samples taken from the surface soils only, and our understanding of the forms and the reactions of P at a soil profile scale is based on few observations. In Finland, the interest in studying the P in complete soil profiles has been particularly small because of the lack of tradition in studying soil genesis, morphology, or classification. In this thesis, the P reserves and the retention of orthophosphate phosphorus (PO4-P) were examined in four cultivated mineral soil profiles in Finland (three Inceptisols and one Spodosol). The soils were classified according to the U.S. Soil Taxonomy and soil samples were taken from the genetic horizons in the profiles. The samples were analyzed for total P concentration, Chang and Jackson P fractions, P sorption properties, concentrations of water-extractable P, and for concentrations of oxalate-extractable Al and Fe. Theoretical P sorption capacities and degrees of P saturation were calculated with the data from the oxalate-extractions and the P fractionations. The studied profiles can be divided into sections with clearly differing P characteristics by their master horizons Ap, B and C. The C (or transitional BC) horizons below an approximate depth of 70 cm were dominated by, assumingly apatitic, H2SO4-soluble P. The concentration of total P in the C horizons ranged from 729 to 810 mg kg-1. In the B horizons between the depths of 30 and 70 cm, a significant part of the primary acid-soluble P has been weathered and transformed to secondary P forms. A mean weathering rate of the primary P in the soils was estimated to vary between 230 and 290 g ha-1 year-1. The degrees of P saturation in the B and C horizons were smaller than 7%, and the solubility of PO4-P was negligible. The P conditions in the Ap horizons differed drastically from those in the subsurface horizons. The high concentrations of total P (689-1870 mg kg-1) in the Ap horizons are most likely attributable to long-term cultivation with positive P balances. A significant proportion of the P in the Ap horizons occurred in the NH4F- and NaOH-extractable forms and as organic P. These three P pools, together with the concentrations of oxalate-extractable Al and Fe, seem to control the dynamics of PO4-P in the soils. The degrees of P saturation in the Ap horizons were greater (8-36%) than in the subsurface horizons. This was also reflected in the sorption experiments: Only the Ap horizons were able to maintain elevated PO4-P concentrations in the solution phase − all the subsoil horizons acted as sinks for PO4-P. Most of the available sorption capacity in the soils is located in the B horizons. The results suggest that this capacity could be utilized in reducing the losses of soluble P from excessively fertilized soils by mixing highly sorptive material from the B horizons with the P-enriched surface soil. The drastic differences in the P characteristics observed between adjoining horizons have to be taken into consideration when conducting soil sampling. Sampling of subsoils has to be made according to the genetic horizons or at small depth increments. Otherwise, contrasting materials are likely to be mixed in the same sample; and the results of such samples are not representative of any material present in the studied profile. Air-drying of soil samples was found to alter the results of the sorption experiments and the water extractions. This indicates that the studies on the most labile P forms in soil should be carried out with moist samples.
Resumo:
The chemical index of alteration has been used widely for reconstruction of the palaeoclimate. However, the mechanisms and environmental factors controlling the chemical index of alteration of sediments are not yet fully understood. In this study, autocorrelations of the chemical index of alteration in nine sedimentary profiles, from both the land and the sea, spanning different geological times, are discussed. The sediments of these profiles have different origins (dust, fluvial or ocean sediments) and are from various climate situations and sedimentary environments. Autocorrelations of chemical index of alteration series are ubiquitously evident in all profiles. It is suggested here that autocorrelations may be caused by post-depositional changes such as persistent weathering and diagenesis. As a result, the chemical index of alteration may not reflect climatic conditions during the time of sediment deposition. This study strongly recommends the confirmation of the reliability and veracity of the chemical index of alteration before it is adopted to evaluate the weathering degree of parent rocks and to reconstruct the past climate. Significant autocorrelations in loess profiles were specifically observed, suggesting that the existing understanding of loess deposition in terms of climate conditions requires re-examination, and that previous reconstructions of rapid climate changes (for example, in centennial-millennial scales) should be treated with caution.
Resumo:
Remote sensing has a high potential for environmental evaluation. However, a necessity exists for a better understanding of the relations between the soil attributes and spectral data. The objective of this work was to analyze the spectral behavior of some soil profiles from the region of Piracicaba, São Paulo State, using a laboratory spectroradiometer (400 to 2500 nm). The relations between the reflected electromagnetic energy and the soil physical, chemical and mineralogical attributes were analyzed, verifying the spectral variations of soil samples in depth along the profiles with their classification and discrimination. Sandy soil reflected more, presenting a spectral curve with an ascendant form, opposite to clayey soils. The 1900 nm band discriminated soil with 2:1 mineralogy from the 1:1 and oxidic soils. It was possible to detect the presence of kaolinite, gibbsite, hematite and goethite in the soils through the descriptive aspects of curves, absorption features and reflectance intensity. A relation exists between the weathering stage and spectral data. The evaluation of the superficial and subsuperficial horizon samples allowed characterizing and discriminating the analytical variability of the profile, helping to soil distinguishing and classification.
Resumo:
Deposits corresponding to multiple periods of glaciation are preserved in ice-free areas adjacent to Reedy Glacier, southern Transantarctic Mountains. Glacial geologic mapping, supported by 10Be surface-exposure dating, shows that Reedy Glacier was significantly thicker than today multiple times during the mid-to-late Cenozoic. Longitudinal-surface profiles reconstructed from the upper limits of deposits indicate greater thickening at the glacier mouth than at the head during these episodes, indicating that Reedy Glacier responded primarily to changes in the thickness of the West Antarctic Ice Sheet. Surface-exposure ages suggest this relationship has been in place since at least 5 Ma. The last period of thickening of Reedy Glacier occurred during Marine Isotope Stage 2, at which time the glacier surface near its confluence with the West Antarctic Ice Sheet was at least 500 m higher than today.
Resumo:
As a part of the Russian-German project "Siberian River-Runoff (SIRRO)" the major element composition of the dissolved load and the major and trace element composition of particulate load and bottom sediment of the Yenisei River and Estuary were analyzed and examined in context of the basin lithology and climate. In addition, the processes controlling the transformation of the river load in the estuarine mixing zone were investigated. The chemical composition of the dissolved and particulate load of the Yenisei fluvial endmember is generally comparable to that of other major world rivers. The dissolved load is chiefly controlled by carbonate weathering and the chemical composition of the river suspended particulate matter (SPM) is similar to that of the North American Shale Composite (NASC), which represents the weathering product of the upper continental crust. The Chemical Index of Alteration (CIA) of the Yenisei SPM amounts to 71, which indicates moderate chemical weathering. With regard to the SPM geochemistry, the Yenisei occupies an intermediate position between the adjacent rivers Khatanga and the Lena. Drastic changes in the composition of the river load are seen in the mixing zone between fresh and salt water. While dissolved Na, Ca, Mg, K, CI, S04, F, Br, Sr and HC03 behave conservatively, dissolved Fe is completely removed from solution at very low salinities. Particulate Mn exhibits a pronounced mid-salinity minimum concomitant with a maximum of dissolved Mn, which is probably related to suboxic conditions in the area of the so-called "marginal filter", where highest turbidities are found. The Mn-minimum in SPM is paralleled by depletions of the elements Ba, Zn, Cd, Ni, Cu and V, which can be associated with manganese particles. The estuarine bottom sediments are composed of mud and sand and the sedimentological parameters of the bottom sediments have to be considered for the interpretation of the bulk geochemical data. The chemical composition of the mud is comparable to the SPM, whereas the sand is relatively enriched in Si/Al, Ba/Al, Zr/Al and Sr/Al ratios and depleted in transition metals.
Resumo:
The Norian Steinmergel-Keuper (SMK) represents a low-latitude cyclically-bedded playa system of the Mid-German Basin. We investigated a drilling site (core Morsleben) and sections from marginal positions. Dolomite/red mudstone beds form rhythmic alternations that were associated with varying monsoon activity. Hence, low K/Al ratios of dolomite beds suggest increased chemical weathering of the crystalline hinterland and therefore increased monsoonal rainfall. High K/Al ratios in red mudstone beds reflect increased physical weathering of the hinterlands during dryer periods. Dolomite layers reflect the lake stage (maximum monsoon) while red mudstones indicate the dry phase (minimum monsoon) of the playa cycle. We distinguished five major types of cyclic facies alternations, representing specific facies zones in the playa system. We have implemented spectrophotometry as a tool for high-resolution cyclostratigraphy. The dense sampling increment (up to 1 cm) allows for the recognition of all orbital frequencies. Sediment colour profiles reveal striking hierarchical cycles from semi-precession (SP, 99 kyr) over precession (P, 19.8 kyr) and obliquity (O, 36 kyr) to eccentricity (E1-2 109 kyr; E3, 413 kyr). A significant about 2 Myr-signal is attributed to the longer-term eccentricity E4. One monsoonal (precession) cycle includes two carbonate precipitation events. We propose that stratified mudstone and red mudstone are associated with maximum and minimum monsoon during the transition of the solstices in perihelion and aphelion, respectively. The two carbonate precipitation events were most likely created when equinoxes were in perihelion and aphelion, respectively. A sedimentary semi-precession response cycle is a novel finding for the Norian strata. The obliquity signal is attributed to incoming atmospheric moisture from the northeast of the SMK basin. The E4 cycle controls lake-level changes over long times. Apparently, E4 is responsible whether or not a threshold value is crossed. Bundles of 109 kyr and 413 kyr in red mudstones suggest a dry system with reduced monsoonal activity. In contrast, humid periods reveal thick layers of dolomite beds, indicating that during those intervals the monsoonal activity was strong enough to prevent the playa system from drying out completely.
Resumo:
An initial aim of this project was to evaluate the conventional techniques used in the analysis of newly prepared environmentally friendly water-borne automotive coatings and compare them with solvent-borne coatings having comparable formulations. The investigation was carried out on microtuned layers as well as on complete automotive multi-layer paint systems. Methods used included the very traditional methods of gloss and hardness and the commonly used photo-oxidation index (from FTIR spectral analysis). All methods enabled the durability to weathering of the automotive coatings to be initially investigated. However, a primary aim of this work was to develop methods for analysing the early stages of chemical and property changes in both the solvent-borne and water-borne coating systems that take place during outdoor natural weathering exposures and under accelerated artificial exposures. This was achieved by using dynamic mechanical analysis (DMA), in both tension mode on the microtomed films (on all depths of the coating systems from the uppermost clear-coat right down to the electron-coat) and bending mode of the full (unmicrotomed) systems, as well as MALDI-Tof analysis on the movement of the stabilisers in the full systems. Changes in glass transition temperature and relative cross-link density were determined after weathering and these were related to changes in the chemistries of the binder systems of the coatings after weathering. Concentration profiles of the UV-stabilisers (UVA and HALS) in the coating systems were analysed as a consequence of migration in the coating systems in separate microtomed layers of the paint samples (depth profiling) after weathering and diffusion co-efficient and solubility parameters were determined for the UV stabilisers in the coating systems. The methods developed were used to determine the various physical and chemical changes that take place during weathering of the different (water-borne and solvent-borne) systems (photoxidation). The solvent-borne formulations showed less changes after weathering (both natural and accelerated) than the corresponding water-borne formulations due to the lower level of cross-links in the binders of the water-borne systems. The silver systems examined were more durable than the blue systems due to the reflecting power of the aluminium and the lower temperature of the silver coatings.
Resumo:
Lake Towuti is a tectonic basin, surrounded by ultramafic rocks. Lateritic soils form through weathering and deliver abundant iron (oxy)hydroxides but very little sulfate to the lake and its sediment. To characterize the sediment biogeochemistry, we collected cores at three sites with increasing water depth and decreasing bottom water oxygen concentrations. Microbial cell densities were highest at the shallow site - a feature we attribute to the availability of labile organic matter and the higher abundance of electron acceptors due to oxic bottom water conditions. At the two other sites, OM degradation and reduction processes below the oxycline led to partial electron acceptor depletion. Genetic information preserved in the sediment as extracellular DNA provides information on aerobic and anaerobic heterotrophs related to Actinobacteria, Nitrospirae, Chloroflexi and Thermoplasmatales. These taxa apparently played a significant role in the degradation of sinking organic matter. However, extracellular DNA concentrations rapidly decrease with core depth. Despite very low sulfate concentrations, sulfate-reducing bacteria were present and viable in sediments at all three sites, as confirmed by measurement of potential sulfate reduction rates. Microbial community fingerprinting supported the presence of taxa related to Deltaproteobacteria and Firmicutes with demonstrated capacity for iron and sulfate reduction. Concomitantly, sequences of Ruminococcaceae, Clostridiales and Methanomicrobiales indicated potential for fermentative hydrogen and methane production. Such first insights into ferruginous sediments show that microbial populations perform successive metabolisms related to sulfur, iron and methane. In theory, iron reduction could reoxidize reduced sulfur compounds and desorb OM from iron minerals to allow remineralization to methane. Overall, we found that biogeochemical processes in the sediments can be linked to redox differences in the bottom waters of the three sites, like oxidant concentrations and the supply of labile OM. At the scale of the lacustrine record, our geomicrobiological study should provide a means to link the extant subsurface biosphere to past environments.
Resumo:
Understanding the mechanism associated with rates of weathering and evolution of rocks→sediment→soil→paleosol in alpine environments raises questions related to the impact of microbial mediation versus various diverse abiotic chemical/physical processes, even including the overall effect of cosmic impact/airburst during the early stage of weathering in Late Glacial (LG) deposits. This study is of a chronosequence of soils/paleosols, with an age range that spans the post–Little Ice Age (post-LIA; <150 yr), the Little Ice Age (LIA; AD 1500–1850), the middle Neoglacial (∼3 ka)–Younger Dryas (YD; <12.8 ka), and the LG (<15 ka). The goal is to elicit trends in weathering, soil morphogenesis, and related eubacterial population changes over the past 13–15 k.yr. The older LG/YD paleosols in the sequence represent soil morphogenesis that started during the closing stage of Pleistocene glaciation. These are compared with undated soils of midto late Neoglacial age, the youngest of LIA and post-LIA age. All profiles formed in a uniform parentmaterial ofmetabasalt composition and in moraine, rockfall, protalus, and alluvial fan deposits. Elsewhere in Europe,North America, and Asia, the cosmic impact/airburst event at 12.8 ka often produced a distinctive, carbon-rich “black mat” layer that shows evidence of high-temperature melting. At this alpine site, older profiles of similar LG age contain scorched and melted surface sediments that are otherwise similar in composition to the youngest/thinnest profiles developing in the catchment today. Moreover, microbial analysis of the sediments offers new insight into the genesis of these sediments: the C and Cu (u = unweathered) horizons in LG profiles present at 12.8 ka (now Ah/Bw) show bacterial population structures that differ markedly from recent alluvial/protalus sample bacterial populations. We propose here that these differences are, in part, a direct consequence of the age/cosmic impact/weathering processes that have occurred in the chronosequence. Of the several questions that emerge from these sequences, perhaps the most important involve the interaction of biotic-mineral factors, which need to be understood if we are to generally fully appreciate the role played by microbes in rock weathering.
Resumo:
This paper is concerned with the surface profiles of a strip after rigid bodies with serrated (saw-teeth) surfaces indent the strip and are subsequently removed. Plane-strain conditions are assumed. This has application in roughness transfer of final metal forming process. The effects of the semi-angle of the teeth, the depth of indentation and the friction on the contact surface on the profile are considered.