975 resultados para WAVE BASIS-SET
Resumo:
To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order Møller-Plesset perturbation theory, fourth-order Møller-Plesset perturbation theory with single, double and quadruple excitations, coupled cluster theory with single and double excitations (CCSD), and with triple excitations treated perturbatively [CCSD(T)]) and hybrid density functional theory using the B3LYP functional, in combination with a hierarchical series of ten Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account either through a relativistic effective core potential for palladium or through a full four-component all-electron approach. Counterpoise corrected relative energies of stationary points are converged to within 0.1-0.2 kcal/mol as a function of the basis-set size. Our best estimate of kinetic and thermodynamic parameters is -8.1 (-8.3) kcal/mol for the formation of the reactant complex, 5.8 (3.1) kcal/mol for the activation energy relative to the separate reactants, and 0.8 (-1.2) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). This agrees well with available experimental data. Our work highlights the importance of sufficient higher angular momentum polarization functions, f and g, for correctly describing metal-d-electron correlation and, thus, for obtaining reliable relative energies. We show that standard basis sets, such as LANL2DZ+ 1f for palladium, are not sufficiently polarized for this purpose and lead to erroneous CCSD(T) results. B3LYP is associated with smaller basis set superposition errors and shows faster convergence with basis-set size but yields relative energies (in particular, a reaction barrier) that are ca. 3.5 kcal/mol higher than the corresponding CCSD(T) values
Resumo:
The level of ab initio theory which is necessary to compute reliable values for the static and dynamic (hyper)polarizabilities of three medium size π-conjugated organic nonlinear optical (NLO) molecules is investigated. With the employment of field-induced coordinates in combination with a finite field procedure, the calculations were made possible. It is stated that to obtain reasonable values for the various individual contributions to the (hyper)polarizability, it is necessary to include electron correlation. Based on the results, the convergence of the usual perturbation treatment for vibrational anharmonicity was examined
Resumo:
En aquesta tesi he estudiat l'efecte de l'error de superposició de base (BSSE) en la planaritat d'algunes molècules. He observat que l'ús d'alguns mètodes de càlcul amb determinades funcions de base descriuen mínims d'energia no planars per les bases nitrogenades de l'ADN. He demostrat que aquests problemes es poden arreglar utilitzant el mètode Counterpoise per corregir el BSSE en els càlculs. En aquesta tesi també he estudiat la fotofísica de la timina i els resultats mostren que existeixen dos camins de relaxació des de l'estat excitat que permeten la regeneració de l'estructura inicial de forma ultraràpida.
Resumo:
This thesis deals with the so-called Basis Set Superposition Error (BSSE) from both a methodological and a practical point of view. The purpose of the present thesis is twofold: (a) to contribute step ahead in the correct characterization of weakly bound complexes and, (b) to shed light the understanding of the actual implications of the basis set extension effects in the ab intio calculations and contribute to the BSSE debate. The existing BSSE-correction procedures are deeply analyzed, compared, validated and, if necessary, improved. A new interpretation of the counterpoise (CP) method is used in order to define counterpoise-corrected descriptions of the molecular complexes. This novel point of view allows for a study of the BSSE-effects not only in the interaction energy but also on the potential energy surface and, in general, in any property derived from the molecular energy and its derivatives A program has been developed for the calculation of CP-corrected geometry optimizations and vibrational frequencies, also using several counterpoise schemes for the case of molecular clusters. The method has also been implemented in Gaussian98 revA10 package. The Chemical Hamiltonian Approach (CHA) methodology has been also implemented at the RHF and UHF levels of theory for an arbitrary number interacting systems using an algorithm based on block-diagonal matrices. Along with the methodological development, the effects of the BSSE on the properties of molecular complexes have been discussed in detail. The CP and CHA methodologies are used for the determination of BSSE-corrected molecular complexes properties related to the Potential Energy Surfaces and molecular wavefunction, respectively. First, the behaviour of both BSSE-correction schemes are systematically compared at different levels of theory and basis sets for a number of hydrogen-bonded complexes. The Complete Basis Set (CBS) limit of both uncorrected and CP-corrected molecular properties like stabilization energies and intermolecular distances has also been determined, showing the capital importance of the BSSE correction. Several controversial topics of the BSSE correction are addressed as well. The application of the counterpoise method is applied to internal rotational barriers. The importance of the nuclear relaxation term is also pointed out. The viability of the CP method for dealing with charged complexes and the BSSE effects on the double-well PES blue-shifted hydrogen bonds is also studied in detail. In the case of the molecular clusters the effect of high-order BSSE effects introduced with the hierarchical counterpoise scheme is also determined. The effect of the BSSE on the electron density-related properties is also addressed. The first-order electron density obtained with the CHA/F and CHA/DFT methodologies was used to assess, both graphically and numerically, the redistribution of the charge density upon BSSE-correction. Several tools like the Atoms in Molecules topologycal analysis, density difference maps, Quantum Molecular Similarity, and Chemical Energy Component Analysis were used to deeply analyze, for the first time, the BSSE effects on the electron density of several hydrogen bonded complexes of increasing size. The indirect effect of the BSSE on intermolecular perturbation theory results is also pointed out It is shown that for a BSSE-free SAPT study of hydrogen fluoride clusters, the use of a counterpoise-corrected PES is essential in order to determine the proper molecular geometry to perform the SAPT analysis.
Resumo:
The perturbed Hartree–Fock theory developed in the preceding paper is applied to LiH, BH, and HF, using limited basis‐set SCF–MO wavefunctions derived by previous workers. The calculated values for the force constant ke and the dipole‐moment derivative μ(1) are (experimental values in parentheses): LiH, ke = 1.618(1.026)mdyn/Å,μ(1) = −18.77(−2.0±0.3)D/ÅBH,ke = 5.199(3.032)mdyn/Å,μ(1) = −1.03(−)D/Å;HF,ke = 12.90(9.651)mdyn/Å,μ(1) = −2.15(+1.50)D/Å. The values of the force on the proton were calculated exactly and according to the Hellmann–Feynman theorem in each case, and the discrepancies show that none of the wavefunctions used are close to the Hartree–Fock limit, so that the large errors in ke and μ(1) are not surprising. However no difficulties arose in the perturbed Hartree–Fock calculation, so that the application of the theory to more accurate wavefunctions appears quite feasible.
Resumo:
For the first time, ab inito all electron fully relativistic and correlated Dirac-Fock calculations with prolapse free basis set are reported for a Super Heavy Element. We investigated the relativistic effects on bonding and on some spectroscopic constants for the darmstadtium carbide and our results at DF/CCSD(T) with a prolapse free basis set suggest for R-e, omega(e) and D-e the values of 174 pm, 1114 cm(-1) and 7.29 eV, respectively. These values are very similar to the values for PtC found on literature. It was also found that prolapse free basis set may be important to estimate the dissociation energy using Relativistic 4-components correlated methods. (c) 2007 ELsevier B.V. All rights reserved.
Resumo:
The Gaussian-2, Gaussian-3, complete basis set- (CBS-) QB3, and CBS-APNO methods have been used to calculate ΔH° and ΔG° values for neutral clusters of water, (H2O)n, where n = 2−6. The structures are similar to those determined from experiment and from previous high-level calculations. The thermodynamic calculations by the G2, G3, and CBS-APNO methods compare well against the estimated MP2(CBS) limit. The cyclic pentamer and hexamer structures release the most heat per hydrogen bond formed of any of the clusters. While the cage and prism forms of the hexamer are the lowest energy structures at very low temperatures, as temperature is increased the cyclic structure is favored. The free energies of cluster formation at different temperatures reveal interesting insights, the most striking being that the cyclic trimer, cyclic tetramer, and cyclic pentamer, like the dimer, should be detectable in the lower troposphere. We predict water dimer concentrations of 9 × 1014 molecules/cm3, water trimer concentrations of 2.6 × 1012 molecules/cm3, tetramer concentrations of approximately 5.8 × 1011 molecules/cm3, and pentamer concentrations of approximately 3.5 × 1010 molecules/cm3 in saturated air at 298 K. These results have important implications for understanding the gas-phase chemistry of the lower troposphere.
Resumo:
Complete basis set and Gaussian-n methods were combined with Barone and Cossi's implementation of the polarizable conductor model (CPCM) continuum solvation methods to calculate pKa values for six carboxylic acids. Four different thermodynamic cycles were considered in this work. An experimental value of −264.61 kcal/mol for the free energy of solvation of H+, ΔGs(H+), was combined with a value for Ggas(H+) of −6.28 kcal/mol, to calculate pKa values with cycle 1. The complete basis set gas-phase methods used to calculate gas-phase free energies are very accurate, with mean unsigned errors of 0.3 kcal/mol and standard deviations of 0.4 kcal/mol. The CPCM solvation calculations used to calculate condensed-phase free energies are slightly less accurate than the gas-phase models, and the best method has a mean unsigned error and standard deviation of 0.4 and 0.5 kcal/mol, respectively. Thermodynamic cycles that include an explicit water in the cycle are not accurate when the free energy of solvation of a water molecule is used, but appear to become accurate when the experimental free energy of vaporization of water is used. This apparent improvement is an artifact of the standard state used in the calculation. Geometry relaxation in solution does not improve the results when using these later cycles. The use of cycle 1 and the complete basis set models combined with the CPCM solvation methods yielded pKa values accurate to less than half a pKa unit. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001
Resumo:
Complete Basis Set and Gaussian-n methods were combined with CPCM continuum solvation methods to calculate pKa values for six carboxylic acids. An experimental value of −264.61 kcal/mol for the free energy of solvation of H+, ΔGs(H+), was combined with a value for Ggas(H+) of −6.28 kcal/mol to calculate pKa values with Cycle 1. The Complete Basis Set gas-phase methods used to calculate gas-phase free energies are very accurate, with mean unsigned errors of 0.3 kcal/mol and standard deviations of 0.4 kcal/mol. The CPCM solvation calculations used to calculate condensed-phase free energies are slightly less accurate than the gas-phase models, and the best method has a mean unsigned error and standard deviation of 0.4 and 0.5 kcal/mol, respectively. The use of Cycle 1 and the Complete Basis Set models combined with the CPCM solvation methods yielded pKa values accurate to less than half a pKa unit.
Resumo:
The complete basis set methods CBS-4, CBS-QB3, and CBS-APNO, and the Gaussian methods G2 and G3 were used to calculate the gas phase energy differences between six different carboxylic acids and their respective anions. Two different continuum methods, SM5.42R and CPCM, were used to calculate the free energy differences of solvation for the acids and their anions. Relative pKa values were calculated for each acid using one of the acids as a reference point. The CBS-QB3 and CBS-APNO gas phase calculations, combined with the CPCM/HF/6-31+G(d)//HF/6-31G(d) or CPCM/HF/6-31+G(d)//HF/6-31+G(d) continuum solvation calculations on the lowest energy gas phase conformer, and with the conformationally averaged values, give results accurate to ½ pKa unit. © 2001 American Institute of Physics.
Resumo:
Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information.
Resumo:
A method of assembling the elements of the Fock matrix is described which is a modification of that due to Dacre. Lists of symmetry equivalent one-electron integrals are used as pointers to abbreviate the process of collecting two-electron integrals into the Fock matrix.
Resumo:
We investigated the structural, elastic, and electronic properties of the cubic perovskite-type BaHfO3 using a first-principles method based on the plane-wave basis set. Analysis of the band structure shows that perovskite-type BaHfO3 is a wide gap indirect semiconductor. The band-gap is predicted to be 3.94 eV within the screened exchange local density approximation (sX-LDA). The calculated equilibrium lattice constant of this compound is in good agreement with the available experimental and theoretical data reported in the literatures. The independent elastic constants (C-11, C-12, and C-44), bulk modules B and its pressure derivatives B', compressibility beta, shear modulus G, Young's modulus Y, Poisson's ratio nu, and Lame constants (mu, lambda) are obtained and analyzed in comparison with the available theoretical and experimental data for both the singlecrystalline and polycrystalline BaHfO3. The bonding-charge density calculation make it clear that the covalent bonds exist between the Hf and 0 atoms and the ionic bonds exist between the Ba atoms and HfO3 ionic groups in BaHfO3. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The quantum confinement effect, electronic properties, and optical properties of TiO2 nanowires in rutile structure are investigated via first-principles calculations. We calculate the size- and shape-dependent band gap of the nanowires and fit the results with the function E-g = E-g(bulk) + beta/d(alpha). We find that the quantum confinement effect becomes significant for d < 25 angstrom, and a notable anisotropy exists that arises from the anisotropy of the effective masses. We also evaluate the imaginary part of the frequency-dependent dielectric function [epsilon(2)(omega)] within the electric-dipole approximation, for both the polarization parallel [epsilon(parallel to)(2)(omega)] and the perpendicular [epsilon 1/2(omega)] to the axial (c) direction. The band structure of the nanowires is calculated, with which the fine structure of epsilon(parallel to)(2)(omega) has been analyzed.
Resumo:
p-type doping is a great challenge for the full utilization of ZnO as short-wavelength optoelectronic material. Due to a large electronegative characteristic of oxygen, the ionization energy of acceptors in ZnO is usually too high. By analyzing the defect wave-function character, we propose several approaches to lower the acceptor ionization energy by codoping acceptors with donor or isovalent atoms. Using the first-principles band-structure method, we show that the acceptor transition energies of V-Zn-O-O can be reduced by introducing F-O next to V-Zn to reduce electronic potential, whereas the acceptor transition energy of N-O-nZn(Zn) (n=1-4) can be reduced if we replace Zn by isovalent Mg or Be to reduce the anion and cation kinetic p-d repulsion, as well as the electronic potential.