963 resultados para WATER-REPELLENT SURFACES
Resumo:
Le byssus est un amas de fibres que les moules produisent afin de s’ancrer aux surfaces immergées sous l’eau. Ces fibres sont pourvues de propriétés mécaniques impressionnantes combinant rigidité, élasticité et ténacité élevées. De plus, elles possèdent un comportement d’auto-guérison de leurs propriétés mécaniques en fonction du temps lorsque la contrainte initialement appliquée est retirée. Les propriétés mécaniques de ces fibres sont le résultat de l’agencement hiérarchique de protéines de type copolymère blocs riches en collagène et de la présence de métaux formant des liens sacrificiels réversibles avec certains acides aminés comme les DOPA et les histidines. Bien que cette fibre soit très intéressante pour la production de matériaux grâce à son contenu élevé en collagène potentiellement biocompatible, cette ressource naturelle est traitée comme un déchet par les mytiliculteurs. L’objectif de cette thèse était de valoriser cette fibre en extrayant les protéines pour générer une nouvelle classe de matériaux biomimétiques. Un hydrolysat de protéines de byssus (BPH) riche en acides aminés chargés, i.e. ~30 % mol, et permettant de former des films a pu être généré. Lorsque solubilisé à pH 10.5, le BPH forme un hydrogel contenant des structures en triple hélice de collagène et des feuillets β anti-parallèles intra- et inter-moléculaires. Suite à l’évaporation de l’eau, le film de BPH résultant est insoluble en milieu aqueux à cause des structures secondaires très stables agissant comme points de réticulation effectifs. Les propriétés mécaniques des films de BPH sont modulables en fonction du pH. Au point isoélectrique (pI = 4.5), les interactions électrostatiques entre les charges opposées agissent comme points de réticulation et augmentent la rigidité des films et leur contrainte à la rupture sans affecter la déformation à la rupture. À pH plus élevé ou plus bas que le pI, les performances mécaniques des films sont plus faibles à cause de la répulsion entre les groupements fonctionnels de même charge qui interagissent plutôt avec les molécules d’eau et causent le gonflement de la matrice protéique des films. Le BPH contenant un nombre élevé d’acides aminés chargés et réactifs, nous avons pu réticuler les films de manière covalente à l’aide d’EDC ou de glutaraldéhyde. Les propriétés mécaniques des films sont modulables en fonction de la concentration d’EDC utilisée lors de la réticulation ou en employant du glutaraldéhyde comme agent réticulant. Les films sont à la fois plus rigides et plus forts avec un degré de réticulation élevé, mais perdent leur extensibilité à mesure que les segments libres de s’étirer lors d’une traction deviennent entravés par les points de réticulation. La réticulation augmente également la résistance à la dégradation enzymatique par la collagénase, les films les plus fortement réticulés lui étant pratiquement insensibles. La spectroscopie infrarouge montre enfin que la réticulation entraîne une transition de feuillets β anti-parallèles inter-moléculaires vers des structures de type hélices de collagène/PPII hydratées. Des liens sacrificiels ont été formés dans les films de BPH par traitement au pI et/ou avec différents métaux, i.e. Na+, Ca2+, Fe3+, afin de moduler les propriétés mécaniques statiques et d’évaluer le rôle de ces traitements sur le comportement d’auto-guérison lors de tests mécaniques cycliques avec différents temps de repos. Plus la valence des ions métalliques ajoutés augmente, plus les propriétés mécaniques statiques affichent un module, une contrainte à la rupture et une ténacité élevés sans toutefois affecter la déformation à la rupture, confirmant la formation de liens sacrificiels. Les tests mécaniques cycliques montrent que les traitements au pI ou avec Ca2+ créent des liens sacrificiels ioniques réversibles qui mènent à un processus d’auto-guérison des performances mécaniques dépendant du pH. L’ajout de Fe3+ à différentes concentrations module les performances mécaniques sur un plus large intervalle et la nature plus covalente de son interaction avec les acides aminés permet d’atteindre des valeurs nettement plus élevées que les autres traitements étudiés. Le Fe3+ permet aussi la formation de liens sacrificiels réversibles menant à l’auto-guérison des propriétés mécaniques. Les spectroscopies Raman et infrarouge confirment que le fer crée des liaisons avec plusieurs acides aminés, dont les histidines et les DOPA. Les résultats dans leur ensemble démontrent que les films de BPH sont des hydrogels biomimétiques du byssus qui peuvent être traités ou réticulés de différentes façons afin de moduler leurs performances mécaniques. Ils pourraient ainsi servir de matrices pour des applications potentielles dans le domaine pharmaceutique ou en ingénierie tissulaire.
Resumo:
The dissociation behaviour and valence-electronic structure of water adsorbed on clean and oxygen-covered Ru{0001}, Rh{111}, Pd{111}, Ir{111} and Pt{111} surfaces has been studied by high-resolution X-ray photoelectron spectroscopy with the aim of identifying similarities and trends within the Pt-group metals. On average, we find higher reactivity for the 4d metals (Ru, Rh, Pd) as compared to 5d (Ir, Pt), which is correlated with characteristic shifts in the 1b(1) and 3a(1) molecular orbitals of water. Small amounts of oxygen (<0.2 ML) induce dissociation of water on all five surfaces, for higher coverages (>0.25 ML) only intact water is observed. Under UHV conditions these higher coverages can only be reached on the 4d metals, the 5d metals are, therefore, not passivated.
Resumo:
We report vibrational configuration interaction calculations of the monomer fundamentals of (H2O)(2), (D2O)(2), (H2O)(3), and (D2O)(3) using the code MULTIMODE and full dimensional ab initio-based global potential energies surfaces (PESs). For the dimer the HBB PES [Huang , J. Chem. Phys 128, 034312 (2008)] is used and for the trimer a new PES, reported here, is used. The salient properties of the new trimer PES are presented and compared to previous single-point calculations and the vibrational energies are compared with experiments. (C) 2008 American Institute of Physics.
Resumo:
Canonical Monte Carlo simulations for the Au(210)/H(2)O interface, using a force field recently proposed by us, are reported. The results exhibit the main features normally observed in simulations of water molecules in contact with different noble metal surfaces. The calculations also assess the influence of the surface topography on the structural aspects of the adsorbed water and on the distribution of the water molecules in the direction normal to the metal surface plane. The adsorption process is preferential at sites in the first layer of the metal. The analysis of the density profiles and dipole moment distributions points to two predominant orientations. Most of the molecules are adsorbed with the molecular plane parallel to surface, while others adsorb with one of the O-H bonds parallel to the surface and the other bond pointing towards the bulk liquid phase. There is also evidence of hydrogen bond formation between the first and second solvent layers at the interface. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ab initio calculations of large cluster models have been performed in order to study water adsorption at the five-fold coordinated adsorption site on pure Mg(001) and MgO(001) surfaces doped with Fe, Ca, and Al. The geometric parameters of the adsorbed water molecule have been optimized preparatory to analysis of binding energies, charge transfer, preferential sites of interaction, and bonding distances. We have used Mulliken population analysis methods in order to analyze charge distributions and the direction of charge transfer. We have also investigated energy gaps, HOMO energies, and SCF orbital energies as well as the acid-base properties of our cluster model. Numerical results are compared, where possible, with experiment and interpreted in the framework of various analytical models. (C) 2001 John Wiley & Sons, Inc.
Resumo:
A significant increase of surface hydrophilicity of copper and gold surfaces was obtained after atmospheric pressure plasma treatment using the surface dielectric barrier discharge with specific electrode geometry, the so-called diffuse coplanar surface barrier discharge. Surface wettability was estimated using the sessile drop method with further calculation of the surface free energy. After the plasma treatments, it was observed that the treated surfaces exhibited hydrophobic recovery (or aging effect). The aging effect was studied in different storage environments, such as air, low and high vacuum. The role of plasma and the reasons of the following aging effect are discussed with respect to the observed hydrophilic recovery after immersing the aged surfaces into deionized water. The changes in the surface morphology, composition and bond structure are presented and discussed as well. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
Nowadays, there is a great interest in the economic success of direct ethanol fuel cells; however, our atomistic understanding of the designing of stable and low-cost catalysts for the steam reforming of ethanol is still far from satisfactory, in particular due to the large number of undesirable intermediates. In this study, we will report a first-principles investigation of the adsorption properties of ethanol and water at low coverage on close-packed transition-metal (TM) surfaces, namely, Fe(110), Co(0001), Ni(111), Cu(111), Ru(0001), Rh(111), Pd(111), Ag(111), Os(0001), Ir(111), Pt(111), and Au(111), employing density functional theory (DFT) calculations. We employed the generalized gradient approximation with the formulation proposed by Perdew, Burke, and Erzenholf (PBE) to the exchange correlation functional and the empirical correction proposed by S. Grimme (DFT+D3) for the van der Waals correction. We found that both adsorbates binds preferentially near or on the on top sites of the TM surfaces through the 0 atoms. The PBE adsorption energies of ethanol and water decreases almost linearly with the increased occupation of the 4d and 5d d-band, while there is a deviation for the 3d systems. The van der Waals correction affects the linear behavior and increases the adsorption energy for both adsorbates, which is expected as the van der Waals energy due to the correlation effects is strongly underestimated by DFT-PBE for weak interacting systems. The geometric parameters for water/TM are not affected by the van der Waals correction, i.e., both DFT and DFT+D3 yield an almost parallel orientation for water on the TM surfaces; however, DFT+D3 changes drastically the ethanol orientation. For example, DFT yields an almost perpendicular orientation of the C-C bond to the TM surface, while the C-C bond is almost parallel to the surface using DFT +D3 for all systems, except for ethanol/Fe(110). Thus, the van der Waals correction decreases the distance of the C atoms to the TM surfaces, which might contribute to break the C-C bond. The work function decreases upon the adsorption of ethanol and water, and both follow the same trends, however, with different magnitude (larger for ethanol/TM) due to the weak binding of water to the surface. The electron density increases mainly in the region between the topmost layer and the adsorbates, which explains the reduction of the substrate work function.
Resumo:
Fuel Cells are a promising alternative energy technology. One of the biggest problems that exists in fuel cell is that of water management. A better understanding of wettability characteristics in the fuel cells is needed to alleviate the problem of water management. Contact angle data on gas diffusion layers (GDL) of the fuel cells can be used to characterize the wettability of GDL in fuel cells. A contact angle measurement program has been developed to measure the contact angle of sessile drops from drop images. Digitization of drop images induces pixel errors in the contact angle measurement process. The resulting uncertainty in contact angle measurement has been analyzed. An experimental apparatus has been developed for contact angle measurements at different temperature, with the feature to measure advancing and receding contact angles on gas diffusion layers of fuel cells.
Ab initio simulations of the structure of thin water layers on defective anatase TiO₂ (101) surfaces
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Permanent water bodies not only store dissolved CO2 but are essential for the maintenance of wetlands in their proximity. From the viewpoint of greenhouse gas (GHG) accounting wetland functions comprise sequestration of carbon under anaerobic conditions and methane release. The investigated area in central Siberia covers boreal and sub-arctic environments. Small inundated basins are abundant on the sub-arctic Taymir lowlands but also in parts of severe boreal climate where permafrost ice content is high and feature important freshwater ecosystems. Satellite radar imagery (ENVISAT ScanSAR), acquired in summer 2003 and 2004, has been used to derive open water surfaces with 150 m resolution, covering an area of approximately 3 Mkm**2. The open water surface maps were derived using a simple threshold-based classification method. The results were assessed with Russian forest inventory data, which includes detailed information about water bodies. The resulting classification has been further used to estimate the extent of tundra wetlands and to determine their importance for methane emissions. Tundra wetlands cover 7% (400,000 km**2) of the study region and methane emissions from hydromorphic soils are estimated to be 45,000 t/d for the Taymir peninsula.
Resumo:
The micellization of a homologous series of zwitterionic surfactants, a group of sulfobetaines, was studied using isothermal titration calorimetry (ITC) in the temperature range from 15 to 65 °C. The increase in both temperature and the alkyl chain length leads to more negative values of ΔGmic(0) , favoring the micellization. The entropic term (ΔSmic(0)) is predominant at lower temperatures, and above ca. 55-65 °C, the enthalpic term (ΔHmic(0)) becomes prevalent, figuring a jointly driven process as the temperature increases. The interaction of these sulfobetaines with different polymers was also studied by ITC. Among the polymers studied, only two induced the formation of micellar aggregates at lower surfactant concentration: poly(acrylic acid), PAA, probably due to the formation of hydrogen bonds between the carboxylic group of the polymer and the sulfonate group of the surfactant, and poly(sodium 4-styrenesulfonate), PSS, probably due to the incorporation of the hydrophobic styrene group into the micelles. The prevalence of the hydrophobic and not the electrostatic contributions to the interaction between sulfobetaine and PSS was confirmed by an increased interaction enthalpy in the presence of electrolytes (NaCl) and by the observation of a significant temperature dependence, the latter consistent with the proposed removal of hydrophobic groups from water.
Resumo:
Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil.