993 resultados para WATER RELATIONS
Resumo:
Grassland is an important ecosystem type which is not only used agriculturally, but also covers sites which cannot be used for other purposes, e.g. in very steep locations or above timberlines. Prolonged summer droughts in the mid-term future, as are predicted for Central Europe, are expected to have a major impact on such ecosystems. To address this topic, rainfall exclusion via shelters was performed on three grassland sites at different altitudes (393, 982 and 1978 m above sea level) in Switzerland. Diurnal drought treatment effects were studied at each study site on a completely sunny day towards the end of an 8–10 week shelter period. Ecophysiological parameters including gas exchange (An, gs and intrinsic WUE) and chlorophyll a fluorescence (Fv/Fm, ΦPSII and NPQ) were considered for several species. The lowland and the Alpine field site were more strongly affected by soil drought than the pre-Alpine site. At all sites, grasses showed different patterns of reductions in stomatal conductance under soil drought compared to legumes and forbs. In addition, grasses were significantly more affected by reductions in assimilation rates at all sites. Time courses of reductions in assimilation rates relative to controls differed between species at the Alpine site, as some species showed reduced assimilation rates at this site in the early morning. Thus, similar rainfall exclusion treatments can trigger different reactions in various species at different sites, which might not become obvious during mere midday measurements. Overall, results suggest strong impacts of prolonged summer drought on grassland net photosynthesis especially at the Alpine site and, within sites, for grasses
Resumo:
The effects of ultraviolet-B (UV-B) radiation on water relations, leaf development, and gas-exchange characteristics in pea (Pisum sativum L. cv Meteor) plants subjected to drought were investigated. Plants grown throughout their development under a high irradiance of UV-B radiation (0.63 W m−2) were compared with those grown without UV-B radiation, and after 12 d one-half of the plants were subjected to 24 d of drought that resulted in mild water stress. UV-B radiation resulted in a decrease of adaxial stomatal conductance by approximately 65%, increasing stomatal limitation of CO2 uptake by 10 to 15%. However, there was no loss of mesophyll light-saturated photosynthetic activity. Growth in UV-B radiation resulted in large reductions of leaf area and plant biomass, which were associated with a decline in leaf cell numbers and cell division. UV-B radiation also inhibited epidermal cell expansion of the exposed surface of leaves. There was an interaction between UV-B radiation and drought treatments: UV-B radiation both delayed and reduced the severity of drought stress through reductions in plant water-loss rates, stomatal conductance, and leaf area.
Resumo:
Ecophysiological research in Australia has focussed, at different times, on the fundamental similarities in function between all plant species, and on the peculiarity of Australian species with respect to their survival in stressful environments. Early work on plant water relations emphasised the differences between species, and indicated that diverse structural and functional attributes occurred in species from the same water-limited environment. Most recent research has emphasised processes that optimise rates of carbon dioxide exchange, but the understanding of functioning in plants with different morphological arrangements is incomplete. Variation in functions between individual plants and geographic populations in wild species has been examined to a lesser extent. The great variety within and between populations of wild plant species warrants further study for both understanding and more effective management of this biological resource.
Resumo:
The fruit maturation stage is considered the optimal phenological stage for implementing water deficitin jujube (Zizyphus jujuba Mill.), since a low, moderate or severe water deficit at this time has no effect onyield, fruit volume or eating quality. However, no information exists at fruit water relations level on themechanisms developed by Z. jujuba to confront drought. The purpose of the present study was to increaseour understanding of the relationship between leaf and fruit water relations of jujube plants under dif-ferent irrigation conditions during fruit maturation, paying special attention to analysing whether fruitsize depends on fruit turgor. For this, adult jujube trees (cv. Grande de Albatera) were subjected to fiveirrigation treatments. Control plants (T0) were irrigated daily above their crop water requirements inorder to attain non-limiting soil water conditions in 2012 and 2013. T1 plants were subjected to deficitirrigation throughout the 2012 season, according to the criteria frequently used by the growers in thearea. T2 (2012), T3 and T4 (2013) were irrigated as T0 except during fruit maturation, in which irrigationwas withheld for 32, 17 and 24 days, respectively. The results indicated that the jujube fruit maturationperiod was clearly sensitive to water deficit. During most of this stage water could enter the fruits viathe phloem rather than via the xylem. From the beginning of water withholding to when maximumwater stress levels were achieved, fruit and leaf turgor were maintained in plants under water deficit.However, a direct relation between turgor and fruit size was not found in jujube fruits, which could bedue to an enhancement of a cell elasticity mechanism (elastic adjustment) which maintains fruit turgorby reducing fruit cells size or to the fact that jujube fruit growth depends on the fruit growth-effectiveturgor rather than just turgor pressure.
Resumo:
The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change.
Resumo:
Hancornia speciosa Gomes é uma espécie conhecida popularmente no Brasil como mangabeira, cujo fruto apresenta alto valor nutricional. O conhecimento sobre a sua fisiologia é ainda escasso, principalmente no que se refere ao desenvolvimento inicial. Dessa forma, o objetivo do presente trabalho foi avaliar os efeitos de diferentes níveis de déficit hídrico sobre o padrão de crescimento, fluorescência de clorofila e relações hídricas em mudas de mangabeira. Foi utilizado um esquema fatorial (tratamentos x época de avaliação) com quatro tratamentos hídricos com base na capacidade de campo (CC) (80%, 60%, 40% e 20%), com cinco repetições. Foram avaliados a altura das plantas, número de folhas, diâmetro do caule, produção e partição de biomassa, eficiência quântica do fotossistema II (PSII), potencial hídrico (?w), teor relativo de água (TRA) e teor de carboidratos, proteínas e prolina. O déficit hídrico severo (20% CC) levou a uma redução no crescimento e alterou o padrão de partição de biomassa nas mudas. No entanto, as relações hídricas não foram significativamente afetadas, pois as mudas mantiveram altos valores de ?w e TRA, sem acúmulos significativos nos teores de solutos orgânicos quando cultivadas com 20%CC. Além do mais, a eficiência quântica do PSII não foi afetada pelos diferentes regimes hídricos, sugerindo que não houve fotoinibição devido ao estresse hídrico. A mudança no padrão de crescimento, com um incremento no aprofundamento das raízes e redução no crescimento da parte aérea parece ser a principal estratégia das mudas de H. speciosa para a manutenção da hidratação dos tecidos durante períodos de déficit hídrico.
Resumo:
A considerable portion of Brazil's commercial eucalypt plantations is located in areas Subjected to periods of water deficit and grown in soils with low natural fertility, particularly poor In potassium. Potassium is influential in controlling water relations of plants. The objective of this study was to verify the influence of potassium fertilization and soil water potential (psi(w)) oil the dry matter production and oil water relations Of eucalypt seedlings grown under greenhouse conditions. the experimental units were arranged in 4x4x2 randomized blocks factorial design, as follow: four species of Eucalyptus (Eucalyptus grandis, Eucalyptus urophylla, Eucalyptus camaldulensis and hybrid Eucalyptus grandis x Eucalyptus urophylla), four dosages of K (0, 50, 100 and 200 mg dm(-3)) and two soil water potentials (-0.01 M Pa and -0.1 M Pa). Plastic containers with 15 cm diameter and 18 cm height, with Styrofoam base, containing 3.0 dm(3) of soil and two plants per container were used. Soil water potential was kept at -0.01 MPa for 40 days after seeding. Afterward, the experimental units were divided into two groups: in one group the potential was kept at 0.01 MPa, and in the other one, at -0.10 MPa. Sol I water potential was control led gravimetrically twice a day with water replacement until the desired potential was reestablished. A week before harvesting, the leaf water potential (psi), the photosynthetic rate (A), the stomatal conductance (gs) and the transpiration rate were evaluated. The last week before harvesting, the mass of the containers was recorded daily before watering to determine the consumption of water by the plants. After harvesting, total dry matter and leaf area were evaluated. the data were Submitted to analysis of variance, to Tukey's tests and regression analyses. The application of K influenced A, gs and the transpiration rate. Plants deficient in K showed lower A and higher Us and transpiration rates. There were no statistical differences in A, gs and transpiration rates ill plants with and Without water deficit. The addition of K reduced the consumption of water per unit of leaf area and, in general, plants submitted to water deficit presented a lower consumption of water.
Resumo:
ABSTRACT Investigations into water potentials in the soil-plant system are of great relevance in environments with abiotic stresses, such as salinity and drought. An experiment was developed using bell pepper in a Neossolo Flúvico (Fluvent) irrigated with water of six levels of electrical conductivity (0, 1, 3, 5, 7 and 9 dS m-1) by using exclusively NaCl and by simulating the actual condition (using a mixture of salts). The treatments were arranged in a randomized block design, in a 6 × 2 factorial arrangement, with four replicates. Soil matric (Ψm) and osmotic (Ψo) potentials were determined 70 days after transplanting (DAT). Soil total potential was considered as the sum of Ψm and Ψo. Leaf water (obtained with the Scholander Chamber) and osmotic potentials were determined before sunrise (predawn) and at noon at 42 and 70 DAT. There were no significant differences between the salt sources used in the irrigation water for soil and plant water potentials. The supply of salts to the soil through irrigation water was the main factor responsible for the decrease in Ψo in the soil and in bell pepper leaves. The total potential of bell pepper at predawn reached values of -1.30 and -1.33 MPa at 42 and 70 DAT, respectively, when water of 9 dS m-1 was used in the irrigation. The total potential at noon reached -2.19 MPa. The soil subjected to the most saline treatment reached a water potential of -1.20 MPa at 70 DAT. There was no predawn equilibrium between the total water potentials of the soil and the plant, indicating that soil potential cannot be considered similar to that of the plant. The determination of the osmotic potential in the soil solution should not be neglected in saline soils, since it has strong influence on the calculation of the total potential.
Resumo:
Mulching has become an important technique for land cover, but there are some technical procedures which should be adjusted for these new modified conditions to establish optimum total water depth. It is also important to observe the soil-water relations as soil water distribution and wetted volume dimensions. The objective of the present study was to estimate melon evapotranspiration under mulching in a protected environment and to verify the water spatial distribution around the melon root system in two soil classes. Mulching provided 27 mm water saving by reducing water evaporation. In terms of volume each plant received, on average, the amount of 175.2 L of water in 84 days of cultivation without mulching, while when was used mulching the water requirement was 160.2 L per plant. The use of mulching reduced the soil moisture variability throughout the crop cycle and allowed a greater distribution of soil water that was more intense in the clay soil. The clayey soil provided on average 43 mm more water depth retention in 0.50 m soil deep relative to the sandy loam soil, and reduced 5.6 mm the crop cycle soil moisture variation compared to sandy loam soil.
Resumo:
Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by a myriad of factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site. It was hypothesized that winter hardiness would be influenced by certain terroir factors , specifically that vines with low water status [more negative leaf water potential (leaf ψ)] would be more winter hardy than vines with high water status (more positive leaf ψ). Twelve different vineyard blocks (six each of Riesling and Cabernet franc) throughout the Niagara Region in Ontario, Canada were chosen. Data were collected during the growing season (soil moisture, leaf ψ), at harvest (yield components, berry composition), and during the winter (bud LT50, bud survival). Interpolation and mapping of the variables was completed using ArcGIS 10.1 (ESRI, Redlands, CA) and statistical analyses (Pearson’s correlation, principal component analysis, multilinear regression) were performed using XLSTAT. Clear spatial trends were observed in each vineyard for soil moisture, leaf ψ, yield components, berry composition, and LT50. Both leaf ψ and berry weight could predict the LT50 value, with strong positive correlations being observed between LT50 and leaf ψ values in eight of the 12 vineyard blocks. In addition, vineyards in different appellations showed many similarities (Niagara Lakeshore, Lincoln Lakeshore, Four Mile Creek, Beamsville Bench). These results suggest that there is a spatial component to winter injury, as with other aspects of terroir, in the Niagara region.
Resumo:
center dot Background and Aims Drought is a major environmental constraint affecting growth and production of Coffea canephora. Selection of C. canephora clones has been largely empirical as little is known about how clones respond physiologically to drought. Using clones previously shown to differ in drought tolerance, this study aimed to identify the extent of variation of water use and the mechanisms responsible, particularly those associated morphological traits.center dot Methods Clones (14 and 120, drought-tolerant; 46 and 109A, drought-sensitive, based on their abilities to yield under drought) were grown in 120-L pots until they were 12-months old, when an irrigation and a drought treatment were applied; plants were droughted until the pressure potential (Psi(x)) before dawn (pre-dawn) reached -3.0 MPa. Throughout the drought period, Psi(x) and stomatal conductance (g(s)) were measured. At the end of the experiment, carbon isotope ratio and parameters from pressure-volume curves were estimated. Morphological traits were also assessed.center dot Key Results and Conclusions With irrigation, plant hydraulic conductance (K-L), midday Psi(x) and total biomass were all greater in clones 109A and 120 than in the other clones. Root mass to leaf area ratio was larger in clone 109A than in the others, whereas rooting depth was greater in drought-tolerant than in drought-sensitive clones. Predawn Psi(x) of -3.0 MPa was reached fastest by 109A, followed progressively by clones 46, 120 and 14. Decreases in g(s) with declining Psi(x), or increasing evaporative demand, were similar for clones 14, 46, and 120, but lower in 109A. Carbon isotope ratio increased under drought; however, it was lower in 109A than in other clones. For all clones, Psi(x), g(s) and KL recovered rapidly following re-watering. Differences in root depth, KL and stomatal control of water use, but not osmotic or elastic adjustments, largely explained the differences in relative tolerance to drought stress of clones 14 and 120 compared with clones 46 and 109A.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mudas envasadas de Coleus blumei, com três meses de idade, foram submetidas a diferentes concentrações de cloreto de sódio (NaCl: 0,00; 0,25; 0,50 e 1,00%). Visando determinar a absorção osmótica, as mudas tiveram seus caules cortados a 10 cm acima do solo. Os caules remanescentes foram interligados a tubos de vidro por tubos flexíveis de borracha. Foram feitas leituras (cm) a cada 30 minutos dos níveis das colunas de água nos capilares, correspondentes às absorções osmóticas de água, sendo ao todo realizadas onze leituras. em outro momento, mudas de C. blumei, com a mesma idade das anteriores, receberam as mesmas concentrações de NaCl descritas anteriormente, e, ao ar livre, foram avaliadas em termos de transpiração e resistência estomática, usando-se para isto porômetro LI 1600. Usou-se delineamento em blocos casualizados, com cinco repetições, submetendo-se os dados à análise de variância e regressão polinomial. Verificou-se para todos os tratamentos aumento da absorção osmótica até três horas após a adição das soluções. A partir desse momento observou-se reversão da absorção osmótica proporcional ao aumento da concentração salina, sendo esse efeito mais pronunciado em 1,00 % de NaCl, o que reflete perdas crescentes de água pelas raízes. No controle a absorção osmótica apresentou comportamento crescente e linear com o passar do tempo. A transpiração foi proporcionalmente reduzida com o aumento da concentração salina.