957 resultados para WASTE-WATER


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nesta dissertação pretendeu-se estudar a viabilidade do uso de eletrodiálise com membranas bipolares (BM) na recuperação de ácido clorídrico e de hidróxido de sódio a partir de um efluente industrial que contém 1.4 mol/L de cloreto de sódio. Estas membranas mostraram ser uma ferramenta eficiente para a produção de ácidos e bases a partir do respetivo sal. Foi feita uma seleção de diferentes membranas bipolares (Neosepta, Fumatech e PCA) e aniónicas (PC-SA e PC-ACID 60) na tentativa de encontrar a combinação mais adequada para o tratamento do efluente. Dependendo do critério, o melhor arranjo de membranas é o uso de PC-ACID 60 (membrana aniónica), PC-SK (membrana catiónica) e membranas bipolares do tipo Neosepta para maior pureza dos produtos; membranas bipolares Fumatech para maior eficiência de dessalinização e membranas bipolares PCA para um maior grau de dessalinização. Tecnologicamente foi possível obter uma dessalinização de 99.8% em quatro horas de funcionamento em modo batch com recirculação de todas as correntes. Independentemente da combinação usada é recomendável que o processo seja parado quando a densidade de corrente deixa de ser máxima, 781 A/m2. Assim é possível evitar o aumento de impurezas nos produtos, contra difusão, descida instantânea do pH e uma dessalinização pouco eficiente. A nível piloto o principal fornecedor de membranas e unidade de tratamento “stack” é a marca alemã PCA. Sendo assim realizaram-se ensaios de repetibilidade, contra difusão, avaliação económica e upscaling utilizando as membranas bipolares PCA. A nível económico estudou-se o uso de dois tipos de unidades de tratamento; EDQ 380 e EDQ 1600, para diferentes níveis de dessalinização (50, 75 e 80%). Tendo em conta a otimização económica, é recomendável uma dessalinização máxima de 80%, uma vez que a eficiência de processo a este ponto é de 40%. A aplicação do método com a unidade EDQ 1600 para uma dessalinização de 50% é a mais vantajosa economicamente, com custos de 16 €/m3 de efluente tratado ou 0,78 €/kg Cl- removido. O número de unidades necessárias é 4 posicionados em série.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Energy from waste (E/W) technologies in the form o f biogas plants, CHP plants and other municipal solid waste (MSW) conversion technologies, have been gaining steady ground in the provision o f energy throughout Europe and the UK. Urban Waste Water Treatment Plants (UWWTP) are utilising much o f the same biochemical processes common to these E/W plants. Previous studies on Centralised Anaerobic Digestion (CAD) within Ireland found that the legislative and economic conditions were not conducive to such an operation on the grounds o f low energy price for electric and heat energy, and due to the restrictive nature o f the allowable feedstocks. Recent changes to the Irish REFIT tariff on energy produced from Anaerobic digestion; alterations to the regulation o f the allowable use o f animal by products(ABP); the recent enactment o f the Renewable Energy D irective (09/28/EC) and a subsequent review o f the draft Biowaste Directive (2001) required that the issue o f decentralised energy production in Ireland be reassessed. In this instance the feasibility study is based on a extant rural community, centred around the village o f Woodford Co Galway. The review found that the prevailing conditions were now such that it was technically and economically feasible for this biochemical process to provide energy and waste treatment facilities at the above location. The review also outlines the last item which is preventing this process from becoming achievable, specifically the lack o f a digestate regulation on land spreading which deals specifically with biowaste. The study finds that the implementation o f the draft EU biowaste regulations, with amendments for Cr and Hg levels to match the proposed Irish regulation for compost, would ensure that Ireland has some o f the most restrictive regulations in Europe for this application. The delay in completing this piece o f legislation is preventing national energy and waste issues from being resolved in a planned and stepwise fashion. A proposed lay out for the new Integrated Waste from Energy Plant (IW/EP) is presented. Budget economic projections and alternative revenue streams are outlined. Finally a review o f the national policies regarding the Rural Development Plan (RDP), the Rural Planning Guidelines (RPG) and the National Renewable Energy Action Plan (NREAP) are examined against the relevant EU directives.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Acid mine drainage (AMD) from the Zn-Pb(-Ag-Bi-Cu) deposit of Cerro de Pasco (Central Peru) and waste water from a Cu-extraction plant has been discharged since 1981 into Lake Yanamate, a natural lake with carbonate bedrock. The lake has developed a highly acidic pH of similar to 1. Mean lake water chemistry was characterized by 16,775 mg/L acidity as CaCO(3), 4330 mg/L Fe and 29,250 mg/L SO(4). Mean trace element concentrations were 86.8 mg/L Cu, 493 mg/L Zn, 2.9 mg/L Pb and 48 mg/L As, which did not differ greatly from the discharged AMD. Most elements showed increasing concentrations from the surface to the lake bottom at a maximal depth of 41 m (e.g. from 3581 to 5433 mg/L Fe and 25,609 to 35,959 mg/L SO(4)). The variations in the H and 0 isotope compositions and the element concentrations within the upper 10 m of the water column suggest mixing with recently discharged AMD, shallow groundwater and precipitation waters. Below 15 m a stagnant zone had developed. Gypsum (saturation index, SI similar to 0.25) and anglesite (SI similar to 0.1) were in equilibrium with lake water. Jarosite was oversaturated (SI similar to 1.7) in the upper part of the water column, resulting in downward settling and re-dissolution in the lower part of the water column (SI similar to -0.7). Accordingly, jarosite was only found in sediments from less than 7 m water depth. At the lake bottom, a layer of gel-like material (similar to 90 wt.% water) of pH similar to 1 with a total organic C content of up to 4.40 wet wt.% originated from the kerosene discharge of the Cu-extraction plant and had contaminant element concentrations similar to the lake water. Below the organic layer followed a layer of gypsum with pH 1.5, which overlaid the dissolving carbonate sediments of pH 5.3-7. In these two layers the contaminant elements were enriched compared to lake water in the sequence As < Pb approximate to Cu < Cd < Zn = Mn with increasing depth. This sequence of enrichment was explained by the following processes: (i) adsorption of As on Fe-hydroxides coating plant roots at low pH (up to 3326 mg/kg As), (ii) adsorption at increasing pH near the gypsum/calcite boundary (up to 1812 mg/kg Pb, 2531 mg/kg Cu. and 36 mg/kg Cd), and (iii) precipitation of carbonates (up to 5177 mg/kg Zn and 810 mg/kg Mn: all data corrected to a wet base). The infiltration rate was approximately equal to the discharge rate, thus gypsum and hydroxide precipitation had not resulted in complete clogging of the lake bedrocks. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Among the numerous approaches to food waste treatment, the food waste disposers method (FWDs), as a newcomer, has become slowly accepted by the general public owing to the worries about its impact on the existing sewage system. This paper aims to justify the role of FWDs in the process of urbanization in order to better prepare a city to take good care of the construction of its infrastructure and the solid waste treatment. Both the literatures and the case study help to confirm that FWDs has no negative effects on the wastewater treatment plant and it is also environmental friendly by reducing the greenhouse gas emissions. In the case study, the Lappeenranta waste water treatment plant has been selected in order to figure out the possible changes to a WWTP following the integration of FWDs: the observation shows only minor changes take place in a WWTP, in case of 25% application, like BOD up 7%, TSS up 6% and wastewater flowrate up 6%, an additional sludge production of 200 tons per year and the extra yield of methane up to 10000m3 per year; however, when the utilization rate of FWD is over 75%, BOD, TSS, and wastewater flowrate will experience more significant changes, thus exerting much pressure on the existing WWTP. FWDs can only be used in residential areas or cities equipped with consummate drainage network within the service sphere of WWTP, therefore, the relevant authority or government department should regulate the installation frequency of FWDs, while promoting the accessory application of FWDs. In the meanwhile, WWTP should improve their treatment process in order to expand their capacity for sludge treatment so as to stay in line with the future development of urban waste management.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this report, information is published concerning Russian water and wastewater treatment plants. The information is based on a questionnaire sent to 70 water and wastewater treatment plants in 2012-2013. The questionnaire was prepared by the International Advanced Water Technologies Centre (IAWTC) and Lahti Development Company (LADEC). The questions dealt with an assessment of the present state, the need for changes, renovation, investments, and how to improve the efficiency of the operation by training and investments. A significant need to renew the old pipelines, constructions, and processes was clearly evident. The aggregated answers can be utilized in Russia as internal benchmarking in order to arrange training and plant visits, which were requested in many of the answers. Sharing this open report with the respondents can aid networking and awareness of HELCOM requirements which relate to waste water treatment plants discharging their waste water directly or indirectly into the Baltic Sea. The aim of this report is to provide information for Finnish small and medium size companies (SMEs) as regards possible water related exportation to different parts of Russia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aquaculture is one of the fastest growing food sectors in the world. Amongst the various branches of aquaculture, shrimp culture has expanded rapidly across the globe because of its faster growth rate, short culture period, high export value and demand in the International market. Indian shrimp farming has experienced phenomenal development over the decades due to its excellent commercial viability. Farmers have adopted a number of innovative technologies to improve the production and to maximize the returns per unit area. The culture methods adopted can be classified in to extensive, modified extensive and semi intensive based on the management strategies adopted in terms of pond size, stocking density, feeding and environmental control. In all these systems water exchanges through the natural tidal effects, or pump fed either from creek or from estuaries is a common practice. In all the cases, the systems are prone to epizootics due to the pathogen introduction through the incoming water, either brought by vectors, reservoir hosts, infected tissue debris and free pathogens themselves. In this scenario, measures to prevent the introduction of pathogen have become a necessity to protect the crop from the onslaught of diseases as well as to prevent the discharge of waste water in to the culture environment.The present thesis deals with Standardization of bioremediation technology for zero water exchange shrimp culture system

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water scarcity and food insecurity are pervasive issues in the developing world and are also intrinsically linked to one another. Through the connection of the water cycle and the carbon cycle this study illustrates that synergistic benefits can be realized by small scale farmers through the implementation of waste water irrigated agroforestry. The WaNuLCAS model is employed using La Huerta agroforestry site in Texcoco, South Central Mexico, as the basis for parameterization. The results of model simulations depicting scenarios of water scarcity and waste water irrigation clearly show that the addition of waste water greatly increases the agroforestry system’s generation of crop yields, above- and below-ground biomass, soil organic matter and carbon storage potential. This increase in carbon sequestration by the system translates into better local food security, diversified household income through payments for ecosystem services and contributes to the mitigation of global climate change.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Giardia duodenalis is a protozoan that parasitizes humans and other mammals and causes giardiasis. Although its isolates have been divided into seven assemblages, named A to G, only A and B have been detected in human faeces. Assemblage A isolates are commonly divided into two genotypes, AI and AII. Even though information about the presence of this protozoan in water and sewage is available in Brazil, it is important to verify the distribution of different assemblages that might be present, which can only be done by genotyping techniques. A total of 24 raw and treated sewage, surface and spring water samples were collected, concentrated and purified. DNA was extracted, and a nested PCR was used to amplify an 890 bp fragment of the gdh gene of G. duodenalis, which codes for glutamate dehydrogenase. Positive samples were cloned and sequenced. Ten out of 24 (41.6%) samples were confirmed to be positive for G. duodenalis by sequencing. Phylogenetic analysis grouped most sequences with G. duodenalis genotype AII from GenBank. Only two raw sewage samples presented sequences assigned to assemblage B. In one of these samples genotype AII was also detected. As these assemblages/genotypes are commonly associated to human giardiasis, the contact with these matrices represents risk for public health.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The project is being conducted in the town of Analândia, São Paulo, Brazil. The constructed wetlands system for water supply consists of a channel with floating aquatic macrophytes, HDS system (Water Decontamination with Soil - Patent PI 850.3030), chlorinating system, filtering system and distribution. The project objectives include investigating the process variables to further optimize design and operation factors, evaluating the relation of nutrients and plants development, biomass production, shoot development, nutrient cycling and total and fecal coliforms removal, comparing the treatment efficiency among the seasons of the year; and moreover to compare the average values obtained between February and June 1998 (Salati et al., 1998) with the average obtained for the same parameters between March and June 2000. Studies have been developed in order to verify during one year the drinking quality of the water for the following parameters: turbidity, color, pH, dissolved oxygen, total of dissolved solids, COD, chloride, among others, according to the Ministry of Health's Regulation 36. This system of water supply projected to treat 15 L s-1 has been in continuous operation for 2 years, it was implemented with support of the National Environment Fund (FNMA), administered by the Center of Environmental Studies (CEA-UNESP), while the technical supervision and design were performed by the Institute of Applied Ecology. The actual research project is being supported by FAPESP.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The chemical stock of emerging contaminants in Brazilian drinking water is of great interest due to the poor water quality at surface water intakes. In addition, little is known about the effect of some contaminants, such as endocrine disrupting chemicals (EDCs), which may be present in both raw and treated water. The aim of this work was to evaluate selected emerging contaminants in Brazilian waters using both chemical and biological analyses. Sampling sites were established in different municipalities based upon raw water quality data. Estrone, 17 beta-estradiol, estriol, 17 alpha-ethinylestradiol, bisphenol A, 4-n-octylphenol and 4-n-nonylphenol were determined in the samples by liquid chromatography-tandem mass spectrometry. A yeast assay using a Saccharomyces cerevisiae bioluminescent bioreporter was used to evaluate the estrogenic activity of the water samples. The first integrated results revealed similarities between the two individual approaches, since higher values for the bioassay were accompanied by significant concentrations of some selected compounds in surface water samples. No estrogenicity was observed for drinking water samples. Our results also indicate that the usual paradigm of evaluating water quality by measuring selected EDCs in a given water sample via chemical analysis, needs to be reviewed since the observed estrogenicity of a water sample is now a better guiding parameter to the selection of samples and substances to be chemically investigated in further analysis. So far, the data bank produced in this work, i.e., the comparison between chemical burden and observed estrogenicity, is not yet sufficiently robust to fully guide this decision. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this project was to evaluate the present state and possible changes of water resources in Lake Ladoga and its drainage basin for the purposes of the sustainable development of North-Western Russia and Finland. The group assessed the state of the water resources in quantitative and qualitative terms, taking the system of sustainable development indicators suggested by the International Commission on Sustainable Development as a basis for assessment. These include pressure indicators (annual withdrawals of ground and surface water, domestic consumption of water per capita), state indicators (ground water reserves, concentration of faecalcoliform in fresh water, biochemical oxygen demand), and response indicators (waste-water treatment coverage, density of hydrological networks). The group proposed the following additional indicators and indices for the complex evaluation of the qualitative and quantitative state of the region's water resources: * Pressure indicators (external load, coefficient of anthropogenic pressure) * State indicators and indices (concentrations of chemicals in water, concentrations of chemicals in sediments, index of water pollution, critical load, critical limit, internal load, load/critical load, concentration/critical limit, internal load/external load, trophic state, biotic indicators and indices) * Response indicators (discharges of pure water, polluted water, partly treated water and the ratio between these, trans-boundary fluxes of pollutants, state expenditure on environmental protection, human life span) The assessment considered both temporal and spatial aspects and produced a regional classification of the area according to the index of water pollution. Mathematical models were developed to describe and forecast the processes under way in the lake and can be used to estimate the influence of climatic changes on the hydrological regime, as well as the influence of anthropogenic load on the trophic state of Lake Ladoga and to assess the consequences of accidental discharges of polluting admixtures of different kinds into the lake. The results of this mathematical modelling may be of use to decision-makers responsible for the management of water resources.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Antibiotics are emerging contaminants worldwide. Due to insufficient policy regulations, public awareness, and the constant exposure of the environment to antibiotic sources has created a major environmental concern. Wastewater treatment plants (WWTP) are not equipped to filter-out these compounds before the discharge of the disinfected effluent into water sources (e.g., lakes and streams) and current available technologies are not equipped to remediate these compounds from environmental sources. Hence, the challenge remains to establish a biological system to remove these antibiotics from wastewater. An invitro hydroponic remediation system was developed using vetiver grass (Chrysopogon zizanioides L. Nash) to remediate tetracycline (TC) from water. Comparative metabolomics studies were conducted to investigate the metabolites/pathways associated with tetracycline metabolism in plants and TC-degrading bacteria. The results show that vetiver plants effectively uptake tetracycline from water sources. Vetiver root-associated bacteria recovered during the hydroponic remediation trial were highly tolerant to TC (as high as 600 ppm) and could use TC as a sole carbon and energy source. Growth conditions (pH, temperature, and oxygen requirement) for TC-tolerant bacteria were optimized for higher TC remediation capability from water sources. The plant (roots and shoots) and bacterial species were further characterized for the metabolites produced during the TC degradation process using GC-MS to identify the possible biochemical mechanism involved. Also, the plant root zone was screened for metabolites/enzymes that were secreted during antibiotic degradation and could potentially enhance the degradation process. The root zone was selected for this analysis because this region of the plant has shown a greater capacity for antibiotic degradation compared to the shoot zone. The role of antioxidant enzymes in TC degradation process revealed glutathione-S-transferase (GSTs) as an important group of enzymes in both plant and bacteria potentially involved in TC degradation process. Metabolomics results also suggest potential GST activity in the TC remediation/ transformation process used by plants. This information could be useful in gaining insights for the application of biological remediation systems for the mitigation of antibiotics from waste-water.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two groundwater bodies, Grazer Feld and Leibnitzer Feld, with surface areas of 166 and 103 km2 respectively are characterised for the first time by measuring the combination of d18O/d2H, 3H/3He, 85Kr, CFC-11, CFC-12 and hydrochemistry in 34 monitoring wells in 2009/2010. The timescales of groundwater recharge have been characterised by 131 d18O measurements of well and surface water sampled on a seasonal basis. Most monitoring wells show a seasonal variation or indicate variable contributions of the main river Mur (0–30%, max. 70%) and/or other rivers having their recharge areas in higher altitudes. Combined d18O/d2H-measurements indicate that 65–75% of groundwater recharge in the unusual wet year of 2009 was from precipitation in the summer based on values from the Graz meteorological station. Monitoring wells downstream of gravel pit lakes show a clear evaporation trend. A boron–nitrate differentiation plot shows more frequent boron-rich water in the more urbanised Grazer Feld and more frequent nitrate-rich water in the more agricultural used Leibnitzer Feld indicating that a some of the nitrate load in the Grazer Feld comes from urban sewer water. Several lumped parameter models based on tritium input data from Graz and monthly data from the river Mur (Spielfeld) since 1977 yield a Mean Residence Time (MRT) for the Mur-water itself between 3 and 4 years in this area. Data from d18O, 3H/3He measurements at the Wagna lysimeter station supports the conclusion that 90% of the groundwaters in the Grazer Feld and 73% in the Leibnitzer Feld have MRTs of <5 years. Only in a few groundwaters were MRTs of 6–10 or 11–25 years as a result of either a long-distance water inflow in the basins or due to longer flow path in somewhat deeper wells (>20 m) with relative thicker unsaturated zones. The young MRT of groundwater from two monitoring wells in the Leibnitzer Feld was confirmed by 85Kr-measurements. Most CFC-11 and CFC-12 concentrations in the groundwater exceed the equilibration concentrations of modern concentrations in water and are therefore unsuitable for dating purposes. An enrichment factor up to 100 compared to atmospheric equilibrium concentrations and the obvious correlation of CFC-12 with SO4, Na, Cl and B in the ground waters of the Grazer Feld suggest that waste water in contact with CFC-containing material above and below ground is the source for the contamination. The dominance of very young groundwater (<5 years) indicates a recent origin of the contamination by nitrate and many other components observed in parts of the groundwater bodies. Rapid measures to reduce those sources are needed to mitigate against further deterioration of these waters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aquaponics is the science of integrating intensive fish aquaculture with plant production in recirculating water systems. Although ion waste production by fish cannot satisfy all plant requirements, less is known about the relationship between total feed provided for fish and the production of milliequivalents (mEq) of different macronutrients for plants, especially for nutrient flow hydroponics used for strawberry production in Spain. That knowledge is essential to consider the amount of macronutrients available in aquaculture systems so that farmers can estimate how much nutrient needs to be supplemented in the waste water from fish, to produce viable plant growth. In the present experiment, tilapia (Oreochromis niloticus L.) were grown in a small-scale recirculating system at two different densities while growth and feed consumption were noted every week for five weeks. At the same time points, water samples were taken to measure pH, EC25, HCO3 – , Cl – , NH4 + , NO2 – , NO3 – , H2PO4 – , SO4 2– , Na + , K+ , Ca 2+ and Mg 2+ build up. The total increase in mEq of each ion per kg of feed provided to the fish was highest for NO3 - , followed, in decreasing order, by Ca 2+ , H2PO4 – , K+ , Mg 2+ and SO4 2– . The total amount of feed required per mEq ranged from 1.61- 13.1 kg for the four most abundant ions (NO3 – , Ca 2+ , H2PO4 – and K+ ) at a density of 2 kg fish m–3 , suggesting that it would be rather easy to maintain small populations of fish to reduce the cost of hydroponic solution supplementation for strawberries.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper explores the water-energy nexus of Spain and offers calculations for both the energy used in the water sector and the water required to run the energy sector. The article takes a prospective approach, offering evaluations of policy objectives for biofuels and expected renewable energy sources. Approximately 5.8% of total electricity demand in Spain is due to the water sector. Irrigated agriculture is one of the Spanish water sectors that show the largest growth in energy requirements. Searches for more efficient modes of farm water use, urban waste water treatment, and the use of desalinated water must henceforth include the energy component. Furthermore, biofuel production, to the levels targeted for 2020, would have an unbearable impact on the already stressed water resources in Spain. However, growing usage of renewable energy sources is not threatened by water scarcity, but legislative measures in water allocation and water markets will be required to meet the requirements of using these sources. Some of these measures, which are pushed by regional governments, are discussed in concluding sections.