980 resultados para Visual-mental-imagery
Resumo:
The present study investigated how ease of imagery influences source monitoring accuracy. Two experiments were conducted in order to examine how ease of imagery influences the probability of source confusions of perceived and imagined completions of natural symmetric shapes. The stimuli consisted of binary pictures of natural objects, namely symmetric pictures of birds, butterflies, insects, and leaves. The ease of imagery (indicating the similarity of the sources) and the discriminability (indicating the similarity of the items) of each stimulus were estimated in a pretest and included as predictors of the memory performance for these stimuli. It was found that confusion of the sources becomes more likely when the imagery process was relatively easy. However, if the different processes of source monitoring-item memory, source memory and guessing biases-are disentangled, both experiments support the assumption that the effect of decreased source memory for easily imagined stimuli is due to decision processes and misinformation at retrieval rather than encoding processes and memory retention. The data were modeled with a Bayesian hierarchical implementation of the one high threshold source monitoring model.
Resumo:
Vestibular cognition has recently gained attention. Despite numerous experimental and clinical demonstrations, it is not yet clear what vestibular cognition really is. For future research in vestibular cognition, adopting a computational approach will make it easier to explore the underlying mech- anisms. Indeed, most modeling approaches in vestibular science include a top-down or a priori component. We review recent Bayesian optimal observer models, and discuss in detail the conceptual value of prior assumptions, likelihood and posterior estimates for research in vestibular cognition. We then consider forward models in vestibular processing, which are required in order to distinguish between sensory input that is induced by active self-motion, and sensory input that is due to passive self-motion. We suggest that forward models are used not only in the service of estimating sensory states but they can also be drawn upon in an offline mode (e.g., spatial perspective transformations), in which interaction with sensory input is not desired. A computational approach to vestibular cogni- tion will help to discover connections across studies, and it will provide a more coherent framework for investigating vestibular cognition.
Resumo:
Mental imagery and perception are thought to rely on similar neural circuits, and many recent behavioral studies have attempted to demonstrate interactions between actual physical stimulation and sensory imagery in the corresponding sensory modality. However, there has been a lack of theoretical understanding of the nature of these interactions, and both interferential and facilitatory effects have been found. Facilitatory effects appear strikingly similar to those that arise due to experimental manipulations of expectation. Using a self-motion discrimination task, we try to disentangle the effects of mental imagery from those of expectation by using a hierarchical drift diffusion model to investigate both choice data and response times. Manipulations of expectation are reasonably well understood in terms of their selective influence on parameters of the drift diffusion model, and in this study, we make the first attempt to similarly characterize the effects of mental imagery. We investigate mental imagery within the computational framework of control theory and state estimation. • Mental imagery and perception are thought to rely on similar neural circuits; however, on more theoretical grounds, imagery seems to be closely related to the output of forward models (sensory predictions). • We reanalyzed data from a study of imagined self-motion. • Bayesian modeling of response times may allow us to disentangle the effects of mental imagery on behavior from other cognitive (top-down) effects, such as expectation.
Resumo:
Les études sont mitigées sur les séquelles cognitives des commotions cérébrales, certaines suggèrent qu’elles se résorbent rapidement tandis que d’autres indiquent qu’elles persistent dans le temps. Par contre, aucunes données n’existent pour indiquer si une tâche cognitive comme l’imagerie mentale visuelle fait ressortir des séquelles à la suite d’une commotion cérébrale. Ainsi, la présente étude a pour objet d’évaluer l’effet des commotions cérébrales d’origine sportive sur la capacité d’imagerie mentale visuelle d’objets et d’imagerie spatiale des athlètes. Afin de répondre à cet objectif, nous comparons les capacités d’imagerie mentale chez des joueurs de football masculins de calibre universitaire sans historique répertorié de commotions cérébrales (n=15) et chez un second groupe d’athlète ayant été victime d’au moins une commotion cérébrale (n=15). Notre hypothèse est que les athlètes non-commotionnés ont une meilleure imagerie mentale que les athlètes commotionnés. Les résultats infirment notre hypothèse. Les athlètes commotionnés performent aussi bien que les athlètes non-commotionnés aux trois tests suivants : Paper Folding Test (PFT), Visual Object Identification Task (VOIT) et Vividness of Visual Imagery Questionnaire (VVIQ). De plus, ni le nombre de commotions cérébrales ni le temps écoulé depuis la dernière commotion cérébrale n’influent sur la performance des athlètes commotionnés.
Resumo:
Verbal thoughts (such as negative cognitions) and sensory phenomena (such as visual mental imagery) are usually conceptualised as distinct mental experiences. The present study examined to what extent depressive thoughts are accompanied by sensory experiences and how this is associated with symptom severity, insight of illness and quality of life. A large sample of mildly to moderately depressed patients (N = 356) was recruited from multiple sources and asked about sensory properties of their depressive thoughts in an online study. Diagnostic status and symptom severity were established over a telephone interview with trained raters. Sensory properties of negative thoughts were reported by 56.5% of the sample (i.e., sensation in at least one sensory modality). The highest prevalence was seen for bodily (39.6%) followed by auditory (30.6%) and visual (27.2%) sensations. Patients reporting sensory properties of thoughts showed more severe psychopathological symptoms than those who did not. The degree of perceptuality was marginally associated with quality of life. The findings support the notion that depressive thoughts are not only verbal but commonly accompanied by sensory experiences. The perceptuality of depressive thoughts and the resulting sense of authenticity may contribute to the emotional impact and pervasiveness of such thoughts, making them difficult to dismiss for their holder.
Resumo:
The authors argue that human desire involves conscious cognition that has strong affective connotation and is potentially involved in the determination of appetitive behavior rather than being epiphenomenal to it. Intrusive thoughts about appetitive targets are triggered automatically by external or physiological cues and by cognitive associates. When intrusions elicit significant pleasure or relief, cognitive elaboration usually ensues. Elaboration competes with concurrent cognitive tasks through retrieval of target-related information and its retention in working memory. Sensory images are especially important products of intrusion and elaboration because they simulate the sensory and emotional qualities of target acquisition. Desire images are momentarily rewarding but amplify awareness of somatic and emotional deficits. Effects of desires on behavior are moderated by competing incentives, target availability, and skills. The theory provides a coherent account of existing data and suggests new directions for research and treatment.
Resumo:
Visual mental imagery is a process that draws on different cognitive abilities and is affected by the contents of mental images. Several studies have demonstrated that different brain areas subtend the mental imagery of navigational and non-navigational contents. Here, we set out to determine whether there are distinct representations for navigational and geographical images. Specifically, we used a Spatial Compatibility Task (SCT) to assess the mental representation of a familiar navigational space (the campus), a familiar geographical space (the map of Italy) and familiar objects (the clock). Twenty-one participants judged whether the vertical or the horizontal arrangement of items was correct. We found that distinct representational strategies were preferred to solve different categories on the SCT, namely, the horizontal perspective for the campus and the vertical perspective for the clock and the map of Italy. Furthermore, we found significant effects due to individual differences in the vividness of mental images and in preferences for verbal versus visual strategies, which selectively affect the contents of mental images. Our results suggest that imagining a familiar navigational space is somewhat different from imagining a familiar geographical space. © 2014 Elsevier Ireland Ltd.
Resumo:
Event-related desynchronization (ERD) of the electroencephalogram (EEG) from the motor cortex is associated with execution, observation, and mental imagery of motor tasks. Generation of ERD by motor imagery (MI) has been widely used for brain-computer interfaces (BCIs) linked to neuroprosthetics and other motor assistance devices. Control of MI-based BCIs can be acquired by neurofeedback training to reliably induce MI-associated ERD. To develop more effective training conditions, we investigated the effect of static and dynamic visual representations of target movements (a picture of forearms or a video clip of hand grasping movements) during the BCI training. After 4 consecutive training days, the group that performed MI while viewing the video showed significant improvement in generating MI-associated ERD compared with the group that viewed the static image. This result suggests that passively observing the target movement during MI would improve the associated mental imagery and enhance MI-based BCIs skills.
Resumo:
Visual imagery – similar to visual perception – activates feature-specific and category-specific visual areas. This is frequently observed in experiments where the instruction is to imagine stimuli that have been shown immediately before the imagery task. Hence, feature-specific activation could be related to the short-term memory retrieval of previously presented sensory information. Here, we investigated mental imagery of stimuli that subjects had not seen before, eliminating the effects of short-term memory. We recorded brain activation using fMRI while subjects performed a behaviourally controlled guided imagery task in predefined retinotopic coordinates to optimize sensitivity in early visual areas. Whole brain analyses revealed activation in a parieto-frontal network and lateral–occipital cortex. Region of interest (ROI) based analyses showed activation in left hMT/V5+. Granger causality mapping taking left hMT/V5+ as source revealed an imagery-specific directed influence from the left inferior parietal lobule (IPL). Interestingly, we observed a negative BOLD response in V1–3 during imagery, modulated by the retinotopic location of the imagined motion trace. Our results indicate that rule-based motion imagery can activate higher-order visual areas involved in motion perception, with a role for top-down directed influences originating in IPL. Lower-order visual areas (V1, V2 and V3) were down-regulated during this type of imagery, possibly reflecting inhibition to avoid visual input from interfering with the imagery construction. This suggests that the activation in early visual areas observed in previous studies might be related to short- or long-term memory retrieval of specific sensory experiences.