964 resultados para Visual background
Resumo:
In visual search one tries to find the currently relevant item among other, irrelevant items. In the present study, visual search performance for complex objects (characters, faces, computer icons and words) was investigated, and the contribution of different stimulus properties, such as luminance contrast between characters and background, set size, stimulus size, colour contrast, spatial frequency, and stimulus layout were investigated. Subjects were required to search for a target object among distracter objects in two-dimensional stimulus arrays. The outcome measure was threshold search time, that is, the presentation duration of the stimulus array required by the subject to find the target with a certain probability. It reflects the time used for visual processing separated from the time used for decision making and manual reactions. The duration of stimulus presentation was controlled by an adaptive staircase method. The number and duration of eye fixations, saccade amplitude, and perceptual span, i.e., the number of items that can be processed during a single fixation, were measured. It was found that search performance was correlated with the number of fixations needed to find the target. Search time and the number of fixations increased with increasing stimulus set size. On the other hand, several complex objects could be processed during a single fixation, i.e., within the perceptual span. Search time and the number of fixations depended on object type as well as luminance contrast. The size of the perceptual span was smaller for more complex objects, and decreased with decreasing luminance contrast within object type, especially for very low contrasts. In addition, the size and shape of perceptual span explained the changes in search performance for different stimulus layouts in word search. Perceptual span was scale invariant for a 16-fold range of stimulus sizes, i.e., the number of items processed during a single fixation was independent of retinal stimulus size or viewing distance. It is suggested that saccadic visual search consists of both serial (eye movements) and parallel (processing within perceptual span) components, and that the size of the perceptual span may explain the effectiveness of saccadic search in different stimulus conditions. Further, low-level visual factors, such as the anatomical structure of the retina, peripheral stimulus visibility and resolution requirements for the identification of different object types are proposed to constrain the size of the perceptual span, and thus, limit visual search performance. Similar methods were used in a clinical study to characterise the visual search performance and eye movements of neurological patients with chronic solvent-induced encephalopathy (CSE). In addition, the data about the effects of different stimulus properties on visual search in normal subjects were presented as simple practical guidelines, so that the limits of human visual perception could be taken into account in the design of user interfaces.
Resumo:
Background Project archives are becoming increasingly large and complex. On construction projects in particular, the increasing amount of information and the increasing complexity of its structure make searching and exploring information in the project archive challenging and time-consuming. Methods This research investigates a query-driven approach that represents new forms of contextual information to help users understand the set of documents resulting from queries of construction project archives. Specifically, this research extends query-driven interface research by representing three types of contextual information: (1) the temporal context is represented in the form of a timeline to show when each document was created; (2) the search-relevance context shows exactly which of the entered keywords matched each document; and (3) the usage context shows which project participants have accessed or modified a file. Results We implemented and tested these ideas within a prototype query-driven interface we call VisArchive. VisArchive employs a combination of multi-scale and multi-dimensional timelines, color-coded stacked bar charts, additional supporting visual cues and filters to support searching and exploring historical project archives. The timeline-based interface integrates three interactive timelines as focus + context visualizations. Conclusions The feasibility of using these visual design principles is tested in two types of project archives: searching construction project archives of an educational building project and tracking of software defects in the Mozilla Thunderbird project. These case studies demonstrate the applicability, usefulness and generality of the design principles implemented.
Resumo:
This paper presents a novel crop detection system applied to the challenging task of field sweet pepper (capsicum) detection. The field-grown sweet pepper crop presents several challenges for robotic systems such as the high degree of occlusion and the fact that the crop can have a similar colour to the background (green on green). To overcome these issues, we propose a two-stage system that performs per-pixel segmentation followed by region detection. The output of the segmentation is used to search for highly probable regions and declares these to be sweet pepper. We propose the novel use of the local binary pattern (LBP) to perform crop segmentation. This feature improves the accuracy of crop segmentation from an AUC of 0.10, for previously proposed features, to 0.56. Using the LBP feature as the basis for our two-stage algorithm, we are able to detect 69.2% of field grown sweet peppers in three sites. This is an impressive result given that the average detection accuracy of people viewing the same colour imagery is 66.8%.
Resumo:
Humans are able of distinguishing more than 5000 visual categories even in complex environments using a variety of different visual systems all working in tandem. We seem to be capable of distinguishing thousands of different odors as well. In the machine learning community, many commonly used multi-class classifiers do not scale well to such large numbers of categories. This thesis demonstrates a method of automatically creating application-specific taxonomies to aid in scaling classification algorithms to more than 100 cate- gories using both visual and olfactory data. The visual data consists of images collected online and pollen slides scanned under a microscope. The olfactory data was acquired by constructing a small portable sniffing apparatus which draws air over 10 carbon black polymer composite sensors. We investigate performance when classifying 256 visual categories, 8 or more species of pollen and 130 olfactory categories sampled from common household items and a standardized scratch-and-sniff test. Taxonomies are employed in a divide-and-conquer classification framework which improves classification time while allowing the end user to trade performance for specificity as needed. Before classification can even take place, the pollen counter and electronic nose must filter out a high volume of background “clutter” to detect the categories of interest. In the case of pollen this is done with an efficient cascade of classifiers that rule out most non-pollen before invoking slower multi-class classifiers. In the case of the electronic nose, much of the extraneous noise encountered in outdoor environments can be filtered using a sniffing strategy which preferentially samples the visensor response at frequencies that are relatively immune to background contributions from ambient water vapor. This combination of efficient background rejection with scalable classification algorithms is tested in detail for three separate projects: 1) the Caltech-256 Image Dataset, 2) the Caltech Automated Pollen Identification and Counting System (CAPICS) and 3) a portable electronic nose specially constructed for outdoor use.
Resumo:
Recently, sonar signals and other sounds produced by cetaceans have been used for acoustic detection of individuals and groups in the wild. However, the detection probability ascertained by concomitant visual survey has not been demonstrated extensively. The finless porpoises (Neophocaena phocaenoides) have narrow band and high-frequency sonar signals, which are distinctive from background noises. Underwater sound monitoring with hydrophones (B&K8103) placed along the sides of a research vessel, concurrent with visual observations was conducted in the Yangtze River from Wuhan to Poyang Lake in 1998 in China. The peak to peak detection threshold was set at 133 dB re 1 mu Pa. With this threshold level, porpoises could be detected reliably within 300 m of the hydrophone. In a total of 774-km cruise, 588 finless porpoises were sighted by visual observation and 44 864 ultrasonic pulses were recorded by the acoustical observation system. The acoustic monitoring system could detect the presence of the finless porpoises 82% of the time. A false alarm in the system occurred with a frequency of 0.9%. The high-frequency acoustical observation is suggested as an effective method for field surveys of small cetaceans, which produce high-frequency sonar signals. (C) 2001 Acoustical Society of America.
Resumo:
The distinguishment between the object appearance and the background is the useful cues available for visual tracking in which the discriminant analysis is widely applied However due to the diversity of the background observation there are not adequate negative samples from the background which usually lead the discriminant method to tracking failure Thus a natural solution is to construct an object-background pair constrained by the spatial structure which could not only reduce the neg-sample number but also make full use of the background information surrounding the object However this Idea is threatened by the variant of both the object appearance and the spatial-constrained background observation especially when the background shifts as the moving of the object Thus an Incremental pairwise discriminant subspace is constructed in this paper to delineate the variant of the distinguishment In order to maintain the correct the ability of correctly describing the subspace we enforce two novel constraints for the optimal adaptation (1) pairwise data discriminant constraint and (2) subspace smoothness The experimental results demonstrate that the proposed approach can alleviate adaptation drift and achieve better visual tracking results for a large variety of nonstationary scenes (C) 2010 Elsevier B V All rights reserved
Resumo:
Methods are presented (1) to partition or decompose a visual scene into the bodies forming it; (2) to position these bodies in three-dimensional space, by combining two scenes that make a stereoscopic pair; (3) to find the regions or zones of a visual scene that belong to its background; (4) to carry out the isolation of objects in (1) when the input has inaccuracies. Running computer programs implement the methods, and many examples illustrate their behavior. The input is a two-dimensional line-drawing of the scene, assumed to contain three-dimensional bodies possessing flat faces (polyhedra); some of them may be partially occluded. Suggestions are made for extending the work to curved objects. Some comparisons are made with human visual perception. The main conclusion is that it is possible to separate a picture or scene into the constituent objects exclusively on the basis of monocular geometric properties (on the basis of pure form); in fact, successful methods are shown.
Resumo:
Background: after stroke, visual impairment may exacerbate the impact of other impairments on overall disability and negatively influence rehabilitation.
Resumo:
Background: Visual impairment (VI) is rising in prevalence and contributing to increasing morbidity, particularly among older people. Understanding patients' problems is fundamental to achieving optimal health outcomes but little is known about how VI impacts on self-management of medication.
Aim: To compare issues relating to medication self-management between older people with and without VI.
Design and setting: Case-control study with participants aged =65 years, prescribed at least two long-term oral medications daily, living within the community.
Method: The study recruited 156 patients with VI (best corrected visual acuity [BCVA] 6/18 to 3/60) at low-vision clinics; community optometrists identified 158 controls (BCVA 6/9 or better). Researchers visited participants in their homes, administered two validated questionnaires to assess medication adherence (Morisky; Medication Adherence Report Scale [MARS]), and asked questions about medication self-management, beliefs, and support.
Results: Approximately half of the participants in both groups reported perfect adherence on both questionnaires (52.5% Morisky; 43.3%, MARS). Despite using optical aids, few (3%) with VI could read medication information clearly; 24% had difficulty distinguishing different tablets. More people with VI (29%) than controls (13%) (odds ratio [OR] = 2.8; 95% confidence interval [CI] = 1.6 to 5.0) needed help managing their medication, from friends (19% versus 10%) or pharmacists (10% versus 2.5%; OR = 4.4, 95% CI = 1.4 to 13.5); more received social service support (OR = 7.1; 95% CI = 3.9 to 12.9).
Conclusion: Compared to their peers without VI, older people with VI are more than twice as likely to need help in managing medication. In clinical practice in primary care, patients' needs for practical support in taking prescribed treatment must be recognised. Strategies for effective medication self-management should be explored.
Resumo:
Handling appearance variations is a very challenging problem for visual tracking. Existing methods usually solve this problem by relying on an effective appearance model with two features: (1) being capable of discriminating the tracked target from its background, (2) being robust to the target's appearance variations during tracking. Instead of integrating the two requirements into the appearance model, in this paper, we propose a tracking method that deals with these problems separately based on sparse representation in a particle filter framework. Each target candidate defined by a particle is linearly represented by the target and background templates with an additive representation error. Discriminating the target from its background is achieved by activating the target templates or the background templates in the linear system in a competitive manner. The target's appearance variations are directly modeled as the representation error. An online algorithm is used to learn the basis functions that sparsely span the representation error. The linear system is solved via ℓ1 minimization. The candidate with the smallest reconstruction error using the target templates is selected as the tracking result. We test the proposed approach using four sequences with heavy occlusions, large pose variations, drastic illumination changes and low foreground-background contrast. The proposed approach shows excellent performance in comparison with two latest state-of-the-art trackers.
Resumo:
This paper proposes an optimisation of the adaptive Gaussian mixture background model that allows the deployment of the method on processors with low memory capacity. The effect of the granularity of the Gaussian mean-value and variance in an integer-based implementation is investigated and novel updating rules of the mixture weights are described. Based on the proposed framework, an implementation for a very low power consumption micro-controller is presented. Results show that the proposed method operates in real time on the micro-controller and has similar performance to the original model. © 2012 Springer-Verlag.
Resumo:
PURPOSE: To describe fundus autofluorescence (AF) patterns and their change over time in patients with age-related macular degeneration (AMD) and high risk of visual loss participating in the drusen laser study (DLS). DESIGN: Randomized clinical trial. METHODS: The study population consisted of 29 patients (35 eyes) participating in the DLS, which is a prospective, randomized, controlled clinical trial of prophylactic laser therapy in patients with AMD and high risk of neovascular complications. The intervention consisted of 16 eyes having prophylactic laser and 19 receiving no treatment. The main outcome measures were changes in the distribution of drusen and AF. Patients were reviewed for a median follow-up or 24 months (range 12-36 months). RESULTS: At baseline, four patterns of fundus AF were recognized: focal increased AF (n = 18), reticular AF (n = 3), combined focal and reticular AF (n = 2), and homogeneous AF (n = 12). At last follow-up, fundus AF remained unchanged in 15 untreated (78%) and in seven treated (43%) eyes. In only one untreated eye, focal areas of increased AF returned to background levels and were no longer detectable at last follow-up, compared with six treated eyes. This difference was statistically significant (P = .03). Only large foveal soft drusen (drusenoid pigment epithelium detachments) consistently corresponded with focal changes in AF, whereas no obvious correspondence was found between small soft drusen located elsewhere and changes in AF. CONCLUSION: The lack of obvious correspondence between the distribution of drusen and of AF found in this study appears to indicate that drusen and AF represent independent measures of aging in the posterior pole. © 2002 Elsevier Science Inc. All rights reserved.
Resumo:
BACKGROUND: To compare the ability of Glaucoma Progression Analysis (GPA) and Threshold Noiseless Trend (TNT) programs to detect visual-field deterioration.
METHODS: Patients with open-angle glaucoma followed for a minimum of 2 years and a minimum of seven reliable visual fields were included. Progression was assessed subjectively by four masked glaucoma experts, and compared with GPA and TNT results. Each case was judged to be stable, deteriorated or suspicious of deterioration
RESULTS: A total of 56 eyes of 42 patients were followed with a mean of 7.8 (SD 1.0) tests over an average of 5.5 (1.04) years. Interobserver agreement to detect progression was good (mean kappa = 0.57). Progression was detected in 10-19 eyes by the experts, in six by GPA and in 24 by TNT. Using the consensus expert opinion as the gold standard (four clinicians detected progression), the GPA sensitivity and specificity were 75% and 83%, respectively, while the TNT sensitivity and specificity was 100% and 77%, respectively.
CONCLUSION: TNT showed greater concordance with the experts than GPA in the detection of visual-field deterioration. GPA showed a high specificity but lower sensitivity, mainly detecting cases of high focality and pronounced mean defect slopes.
Resumo:
BACKGROUND: To investigate the visual outcome of glaucoma patients.
DESIGN: This is a retrospective study of case notes of patients who died while under follow up in a glaucoma clinic of a University Hospital in Scotland between 2006 and 2009.
PARTICIPANTS: Seventy-seven patients were identified.
METHODS: Data collected included type of glaucoma, coexisting pathology and best-corrected visual acuity in Snellen (converted to decimal values) for the first and final clinic visit. The final visual status was evaluated based on the best-corrected visual acuity of the better seeing eye at the last glaucoma clinic visit. Patients who had best-corrected visual acuity of less than Snellen decimal 0.5 were considered not to meet the standards for driving.
MAIN OUTCOME MEASURES: Snellen decimal best-corrected visual acuity, fulfilment of driving standards, and eligibility for partial sight and blind registration at the last clinic visit.
RESULTS: The mean ages at presentation and death were 71.8 ± 10.3 years and 82.2 ± 8.7 years respectively. The mean Snellen decimal best-corrected visual acuity of the better eye at presentation was 0.78, and at the final clinic visit was 0.61. At the final clinic visit, no patients were partial sight registrable, four (5.2%) were blind registrable, and 27 (35.1%) did not fulfil UK driving criteria. Glaucoma patients with other ocular pathologies were more likely to fail UK driving criteria at presentation (P = 0.02) and at last clinic visit (P = 0.03).
CONCLUSION: The majority of glaucoma patients maintained good visual function at the end of their lifetime.
Resumo:
BACKGROUND: Recent National Institute of Clinical Excellence guidance suggests primary surgery should be offered to patients presenting with glaucoma with severe visual field loss. We undertook a survey of UK consultant ophthalmologists to determine if this represents current practice and explore attitudes towards managing patients with advanced glaucoma at presentation.
DESIGN: Questionnaire evaluation study.
PARTICIPANTS: All consultant ophthalmologists currently practicing in the UK.
METHODS: A single-page questionnaire was posted to all consultants (n = 910) currently practicing in the UK along with a pre-paid return envelope. A second questionnaire was sent to non-responders (n = 459).
MAIN OUTCOME MEASURES: Questionnaire responses.
RESULTS: 626 responses were received representing 68.8% of the population surveyed. 152 (24%) volunteered a specialist interest in glaucoma. Consensus opinion for both glaucoma specialists (64.9%) and non-glaucoma specialists (62.4%) was to start with primary medical therapy, most commonly citing surgical risk as the primary reason (23% and 22%, respectively) for this approach. Most felt the highest intraocular pressure measurement during follow up (measured in clinic) was the most important variable for prevention of further visual loss (60% of glaucoma specialists and 55% of non-glaucoma specialists). Eighty-three per cent of all responders suggested they would change their practice if evidence supporting primary surgery as a safe and more effective approach existed.
CONCLUSIONS: Recent National Institute of Clinical Excellence guidance does not reflect the current management approach of UK ophthalmologists. The primary concern was related to potential complications of surgery although most practitioners would be willing to change their practice if evidence existed supporting primary surgery in patients presenting with advanced glaucoma.