941 resultados para Visual Speaker Recognition, Visual Speech Recognition, Cascading Appearance-Based Features
Resumo:
Includes bibliographic references (216).
Resumo:
Supported by Contract AT(11-1)-1018 and Contract AT(11-1)-2118 with U.S. Atomic Energy Commission.
Resumo:
Situational awareness is achieved naturally by the human senses of sight and hearing in combination. Automatic scene understanding aims at replicating this human ability using microphones and cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels of semantic abstractions. We detect and track a speaker who is relatively unconstrained, i.e., free to move indoors within an area larger than the comparable reported work, which is usually limited to round table meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera. Results show that the overall multimodal tracker is more reliable than single modality systems, tolerating large occlusions and cross-talk. System evaluation is performed on both single and multi-modality tracking. The performance improvement given by the audio–video integration and fusion is quantified in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision–recall (recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation computational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker recognition unit and 36% on the precision–recall metric over an audio–video dominant speaker recognition method.
Resumo:
Speech perception routinely takes place in noisy or degraded listening environments, leading to ambiguity in the identity of the speech token. Here, I present one review paper and two experimental papers that highlight cognitive and visual speech contributions to the listening process, particularly in challenging listening environments. First, I survey the literature linking audiometric age-related hearing loss and cognitive decline and review the four proposed causal mechanisms underlying this link. I argue that future research in this area requires greater consideration of the functional overlap between hearing and cognition. I also present an alternative framework for understanding causal relationships between age-related declines in hearing and cognition, with emphasis on the interconnected nature of hearing and cognition and likely contributions from multiple causal mechanisms. I also provide a number of testable hypotheses to examine how impairments in one domain may affect the other. In my first experimental study, I examine the direct contribution of working memory (through a cognitive training manipulation) on speech in noise comprehension in older adults. My results challenge the efficacy of cognitive training more generally, and also provide support for the contribution of sentence context in reducing working memory load. My findings also challenge the ubiquitous use of the Reading Span test as a pure test of working memory. In a second experimental (fMRI) study, I examine the role of attention in audiovisual speech integration, particularly when the acoustic signal is degraded. I demonstrate that attentional processes support audiovisual speech integration in the middle and superior temporal gyri, as well as the fusiform gyrus. My results also suggest that the superior temporal sulcus is sensitive to intelligibility enhancement, regardless of how this benefit is obtained (i.e., whether it is obtained through visual speech information or speech clarity). In addition, I also demonstrate that both the cingulo-opercular network and motor speech areas are recruited in difficult listening conditions. Taken together, these findings augment our understanding of cognitive contributions to the listening process and demonstrate that memory, working memory, and executive control networks may flexibly be recruited in order to meet listening demands in challenging environments.
Resumo:
A new language recognition technique based on the application of the philosophy of the Shifted Delta Coefficients (SDC) to phone log-likelihood ratio features (PLLR) is described. The new methodology allows the incorporation of long-span phonetic information at a frame-by-frame level while dealing with the temporal length of each phone unit. The proposed features are used to train an i-vector based system and tested on the Albayzin LRE 2012 dataset. The results show a relative improvement of 33.3% in Cavg in comparison with different state-of-the-art acoustic i-vector based systems. On the other hand, the integration of parallel phone ASR systems where each one is used to generate multiple PLLR coefficients which are stacked together and then projected into a reduced dimension are also presented. Finally, the paper shows how the incorporation of state information from the phone ASR contributes to provide additional improvements and how the fusion with the other acoustic and phonotactic systems provides an important improvement of 25.8% over the system presented during the competition.
Resumo:
This work uses computer vision algorithms related to features in the identification of medicine boxes for the visually impaired. The system is for people who have a disease that compromises his vision, hindering the identification of the correct medicine to be ingested. We use the camera, available in several popular devices such as computers, televisions and phones, to identify the box of the correct medicine and audio through the image, showing the poor information about the medication, such: as the dosage, indication and contraindications of the medication. We utilize a model of object detection using algorithms to identify the features in the boxes of drugs and playing the audio at the time of detection of feauteres in those boxes. Experiments carried out with 15 people show that where 93 % think that the system is useful and very helpful in identifying drugs for boxes. So, it is necessary to make use of this technology to help several people with visual impairments to take the right medicine, at the time indicated in advance by the physician
Resumo:
Imagens de radar de abertura sintética (SAR) vem sendo bem mais utilizadas do que antes nas aplicações de geociências em regiões tropicais úmidas. Nesta investigação, uma imagem RADARSAT-1, na banda C, polarização HH adquirida em 1998 foi usada para o mapeamento costeiro e avaliação da cobertura da terra na área de Bragança, norte do Brasil. Imagem do radar aerotransportado GEMS-1000, na banda X, polarização HH, adquirida em 1972 durante o projeto RADAM foi também utilizada para avaliar as variações costeiras ocorridas nas últimas três décadas. A pesquisa tem confirmado a utilidade da imagem RADARSAT-1 para o mapeamento geomorfológico e avaliação da cobertura da terra, particularmente em costas de manguezal de macromaré. Além disso, um novo método para estimar as variações da linha de costa baseado na superposição de vetores extraídos de diferentes imagens SAR, com alta acurácia geométrica, tem mostrado que a planície costeira de Bragança tem estado sujeita a severa erosão responsável pelo recuo de aproximadamente 32 km2 e acreção de 20 km2, resultando em uma perda de área de manguezal de aproximadamente 12 km2. Como perspectiva de aplicação, dados SAR orbitais e aerotransportados provaram ser uma importante fonte de informação tanto para o mapeamento geomorfológico, quando para o monitoramento de modificações costeiras em ambientes tropicais úmidos.
Resumo:
This article discusses the detection of discourse markers (DM) in dialog transcriptions, by human annotators and by automated means. After a theoretical discussion of the definition of DMs and their relevance to natural language processing, we focus on the role of like as a DM. Results from experiments with human annotators show that detection of DMs is a difficult but reliable task, which requires prosodic information from soundtracks. Then, several types of features are defined for automatic disambiguation of like: collocations, part-of-speech tags and duration-based features. Decision-tree learning shows that for like, nearly 70% precision can be reached, with near 100% recall, mainly using collocation filters. Similar results hold for well, with about 91% precision at 100% recall.
Resumo:
Children with autistic spectrum disorder (ASD) may have poor audio-visual integration, possibly reflecting dysfunctional 'mirror neuron' systems which have been hypothesised to be at the core of the condition. In the present study, a computer program, utilizing speech synthesizer software and a 'virtual' head (Baldi), delivered speech stimuli for identification in auditory, visual or bimodal conditions. Children with ASD were poorer than controls at recognizing stimuli in the unimodal conditions, but once performance on this measure was controlled for, no group difference was found in the bimodal condition. A group of participants with ASD were also trained to develop their speech-reading ability. Training improved visual accuracy and this also improved the children's ability to utilize visual information in their processing of speech. Overall results were compared to predictions from mathematical models based on integration and non-integration, and were most consistent with the integration model. We conclude that, whilst they are less accurate in recognizing stimuli in the unimodal condition, children with ASD show normal integration of visual and auditory speech stimuli. Given that training in recognition of visual speech was effective, children with ASD may benefit from multi-modal approaches in imitative therapy and language training. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Visual tracking is the problem of estimating some variables related to a target given a video sequence depicting the target. Visual tracking is key to the automation of many tasks, such as visual surveillance, robot or vehicle autonomous navigation, automatic video indexing in multimedia databases. Despite many years of research, long term tracking in real world scenarios for generic targets is still unaccomplished. The main contribution of this thesis is the definition of effective algorithms that can foster a general solution to visual tracking by letting the tracker adapt to mutating working conditions. In particular, we propose to adapt two crucial components of visual trackers: the transition model and the appearance model. The less general but widespread case of tracking from a static camera is also considered and a novel change detection algorithm robust to sudden illumination changes is proposed. Based on this, a principled adaptive framework to model the interaction between Bayesian change detection and recursive Bayesian trackers is introduced. Finally, the problem of automatic tracker initialization is considered. In particular, a novel solution for categorization of 3D data is presented. The novel category recognition algorithm is based on a novel 3D descriptors that is shown to achieve state of the art performances in several applications of surface matching.
Resumo:
In the past decade, tremendous advances in the state of the art of automatic speech recognition by machine have taken place. A reduction in the word error rate by more than a factor of 5 and an increase in recognition speeds by several orders of magnitude (brought about by a combination of faster recognition search algorithms and more powerful computers), have combined to make high-accuracy, speaker-independent, continuous speech recognition for large vocabularies possible in real time, on off-the-shelf workstations, without the aid of special hardware. These advances promise to make speech recognition technology readily available to the general public. This paper focuses on the speech recognition advances made through better speech modeling techniques, chiefly through more accurate mathematical modeling of speech sounds.
Resumo:
abstract With many visual speech animation techniques now available, there is a clear need for systematic perceptual evaluation schemes. We describe here our scheme and its application to a new video-realistic (potentially indistinguishable from real recorded video) visual-speech animation system, called Mary 101. Two types of experiments were performed: a) distinguishing visually between real and synthetic image- sequences of the same utterances, ("Turing tests") and b) gauging visual speech recognition by comparing lip-reading performance of the real and synthetic image-sequences of the same utterances ("Intelligibility tests"). Subjects that were presented randomly with either real or synthetic image-sequences could not tell the synthetic from the real sequences above chance level. The same subjects when asked to lip-read the utterances from the same image-sequences recognized speech from real image-sequences significantly better than from synthetic ones. However, performance for both, real and synthetic, were at levels suggested in the literature on lip-reading. We conclude from the two experiments that the animation of Mary 101 is adequate for providing a percept of a talking head. However, additional effort is required to improve the animation for lip-reading purposes like rehabilitation and language learning. In addition, these two tasks could be considered as explicit and implicit perceptual discrimination tasks. In the explicit task (a), each stimulus is classified directly as a synthetic or real image-sequence by detecting a possible difference between the synthetic and the real image-sequences. The implicit perceptual discrimination task (b) consists of a comparison between visual recognition of speech of real and synthetic image-sequences. Our results suggest that implicit perceptual discrimination is a more sensitive method for discrimination between synthetic and real image-sequences than explicit perceptual discrimination.
Resumo:
This paper predicts speech synthesis, speech recognition, and speaker recognition technology for the year 2001, and it describes the most important research problems to be solved in order to arrive at these ultimate synthesis and recognition systems. The problems for speech synthesis include natural and intelligible voice production, prosody control based on meaning, capability of controlling synthesized voice quality and choosing individual speaking style, multilingual and multidialectal synthesis, choice of application-oriented speaking styles, capability of adding emotion, and synthesis from concepts. The problems for speech recognition include robust recognition against speech variations, adaptation/normalization to variations due to environmental conditions and speakers, automatic knowledge acquisition for acoustic and linguistic modeling, spontaneous speech recognition, naturalness and ease of human-machine interaction, and recognition of emotion. The problems for speaker recognition are similar to those for speech recognition. The research topics related to all these techniques include the use of articulatory and perceptual constraints and evaluation methods for measuring the quality of technology and systems.
Resumo:
This review describes the oculo-visual problems likely to be encountered in Parkinson's disease (PD) with special reference to three questions: (1) are there visual symptoms characteristic of the prodromal phase of PD, (2) is PD dementia associated with specific visual changes, and (3) can visual symptoms help in the differential diagnosis of the parkinsonian syndromes, viz. PD, progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD)? Oculo-visual dysfunction in PD can involve visual acuity, dynamic contrast sensitivity, colour discrimination, pupil reactivity, eye movement, motion perception, and visual processing speeds. In addition, disturbance of visuo-spatial orientation, facial recognition problems, and chronic visual hallucinations may be present. Prodromal features of PD may include autonomic system dysfunction potentially affecting pupil reactivity, abnormal colour vision, abnormal stereopsis associated with postural instability, defects in smooth pursuit eye movements, and deficits in visuo-motor adaptation, especially when accompanied by idiopathic rapid eye movement (REM) sleep behaviour disorder. PD dementia is associated with the exacerbation of many oculo-visual problems but those involving eye movements, visuo-spatial function, and visual hallucinations are most characteristic. Useful diagnostic features in differentiating the parkinsonian symptoms are the presence of visual hallucinations, visuo-spatial problems, and variation in saccadic eye movement dysfunction.