993 resultados para Visual Expression
Resumo:
This is a case study that analyzes photographic documents of the social protest in Spain between 2011 and 2013. The analysis is qualitative and considers the use of space, the visual expression of the messages and the orientation toward the causes or effects of political, economic and social changes. Visual sociology allows us to appreciate, in the case of the Spanish Revolution, a dynamic of “reflexivity” unrecognizable from other research approaches. Two successive waves of social mobilization in response to two different shocks can be appreciated. The first is given by political corruption, unemployment and the threat to consumer society. The second shock is caused by the savage cuts in the Welfare State. Social mobilization is expressed differently in each phase, and the forms taken by the protests show how the class structure in post industrial society shapes the reactions to the crisis of the Welfare State.
Resumo:
Within The Creative Unconscious and Pictorial Sign I explore the dialogue that exists between social language and personal expression to understand how creativity is mediated. I consider how the involuntary inventiveness of artistic creativity and the structuring function of language come to negotiate what artists can experience and represent. My Doctoral practice attempts to question the influence of orthodox postmodernist views and allow sensual and direct experiences to be located within improvisation and spontaneous approaches to image making. I ask if it is possible for a humanistic and psychological interpretation of creativity to move beyond the copy and quotation that some postmodern theories of simulation and the hyperreal advance; but to retain the communicative function of visual expression and the model of a social form of signification instead of naïvely promoting unintelligible and personal languages.
Resumo:
Relative eye size, gross brain morphology and central localization of 2-[I-125]iodomelatonin binding sites and melatonin receptor gene expression were compared in six gadiform fish living at different depths in the north-east Atlantic Ocean: Phycis blennoides (capture depth range 265-1260 m), Nezumia aequalis (445-1512 m), Coryphaenoides rupestris (706-1932 m), Trachyrincus murrayi (1010-1884 m), Coryphaenoides guentheri (1030 m) and Coryphaenoides (Nematonurus) armatus (2172-4787 m). Amongst these, the eye size range was 0.15-0.35 of head length with a value of 0.19 for C.(N.) armatus, the deepest species. Brain morphology reflected behavioural differences with well-developed olfactory regions in P.blennoides, T.murrayi and C. (N.) armatus and evidence of olfactory deficit in N. aequalis, C. rupestris and C. guentheri. All species had a clearly defined optic tectum with 2-[I-125] iodomelatonin binding and melatonin receptor gene expression localized to specific brain regions in a similar pattern to that found in shallow-water fish. Melatonin receptors were found throughout the visual structures of the brains of all species. Despite living beyond the depth of penetration of solar light these fish have retained central features associated with the coupling of cycles of growth, behaviour and reproduction to the diel light-dark cycle. How this functions in the deep sea remains enigmatic.
Resumo:
Total lack of visual experience [dark rearing (DR)] is known to prolong the critical period and delay development of sensory functions in mammalian visual cortex. Recent results show that neurotrophins (NTs) counteract the effects of DR on functional properties of visual cortical cells and exert a strong control on critical period duration. NTs are known to modulate the development and synaptic efficacy of neurotransmitter systems that are affected by DR. However, it is still unknown whether the actions of NTs in dark-reared animals involve interaction with neurotransmitter systems. We have studied the effects of DR on the expression of key molecules in the glutamatergic and GABAergic systems in control and NT-treated animals. We have found that DR reduced the expression of the NMDA receptor 2A subunit and its associated protein PSD-95 (postsynaptic density-95), of GRIP (AMPA glutamate receptor interacting protein), and of the biosynthetic enzyme GAD (glutamic acid decarboxylase). Returning dark-reared animals to light for 2 hr restored normal expression of the above-mentioned proteins almost completely. NT treatment specifically counteracts DR effects; NGF acts primarily on the NMDA system, whereas BDNF acts primarily on the GABAergic system. Finally, the action of NT4 seems to involve both excitatory and inhibitory systems. These data demonstrate that different NTs counteract DR effects by modulating the expression of key molecules of the excitatory and inhibitory neurotransmitter systems
Resumo:
Interferences from the spatially adjacent non-target stimuli evoke ERPs during non-target sub-trials and lead to false positives. This phenomenon is commonly seen in visual attention based BCIs and affects the performance of BCI system. Although, users or subjects tried to focus on the target stimulus, they still could not help being affected by conspicuous changes of the stimuli (flashes or presenting images) which were adjacent to the target stimulus. In view of this case, the aim of this study is to reduce the adjacent interference using new stimulus presentation pattern based on facial expression changes. Positive facial expressions can be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast will be big enough to evoke strong ERPs. In this paper, two different conditions (Pattern_1, Pattern_2) were used to compare across objective measures such as classification accuracy and information transfer rate as well as subjective measures. Pattern_1 was a “flash-only” pattern and Pattern_2 was a facial expression change of a dummy face. In the facial expression change patterns, the background is a positive facial expression and the stimulus is a negative facial expression. The results showed that the interferences from adjacent stimuli could be reduced significantly (P<;0.05) by using the facial expression change patterns. The online performance of the BCI system using the facial expression change patterns was significantly better than that using the “flash-only” patterns in terms of classification accuracy (p<;0.01), bit rate (p<;0.01), and practical bit rate (p<;0.01). Subjects reported that the annoyance and fatigue could be significantly decreased (p<;0.05) using the new stimulus presentation pattern presented in this paper.
Resumo:
Visual information in primates is relayed from the dorsal lateral geniculate nucleus to the cerebral cortex by three parallel neuronal channels designated the parvocellular, magnocellular, and interlaminar pathways. Here we report that m2 muscarinic acetylcholine receptor in the macaque monkey visual cortex is selectively associated with synaptic circuits subserving the function of only one of these channels. The m2 receptor protein is enriched both in layer IV axons originating from parvocellular layers of the dorsal lateral geniculate nucleus and in cytochrome oxidase poor interblob compartments in layers II and III, which are linked with the parvocellular pathway. In these compartments, m2 receptors appear to be heteroreceptors, i.e., they are associated predominantly with asymmetric, noncholinergic synapses, suggesting a selective role in the modulation of excitatory neurotransmission through the parvocellular visual channel.
Resumo:
The olfactory neuroepithelium is a highly plastic region of the nervous system that undergoes continual turnover of primary olfactory neurons throughout life. The mechanisms responsible for persistent growth and guidance of primary olfactory axons along the olfactory nerve are unknown. In the present study, we used antibodies against the Eph-related receptor, EphA5, to localise EphA5, and recombinant EDhA5-IgG fusion protein to localise its ligands. We found that although both EphA5 and its ligands were both expressed by primary olfactory neurons within the embryonic olfactory nerve pathway, there was no graded or complementary expression pattern. In contrast, the expression patterns altered postnatally such that primary olfactory neurons expressed the ligands, whereas the second-order olfactory neurons, the mitral cells, expressed EphA5. The role of EphA5 was analysed by blocking EphA5-ligand interactions in explant cultures of olfactory neuroepithelium using anti-EphA5 antibodies and recombinant EphA5. These perturbations reduced neurite outgrowth from explant cultures and suggest that intrafascicular axon repulsion may serve to limit adhesion and optimise conditions for axon growth. (C) 2000 Wiley-Liss, Inc.
Resumo:
The spatiotemporal expression patterns of the chemorepulsive EphA receptors, EphA4 and EphA7, and three ephrins-A2, A4 and A5, were examined in the developing rat primary olfactory system. Unlike the visual system that has simple and stable gradients of Ephs and ephrins, the olfactory system demonstrates complex spatiotemporal expression patterns of these molecules. Using immunohistochemistry, we demonstrate that expression of these molecules is dynamic and tightly regulated both within and between different cell types. We reveal restricted targeting of these proteins within subcellular compartments of some neurons. EphA4, ephrin-A2 and ephrin-A5 were expressed by primary olfactory axons during the embryonic formation of the olfactory nerve. There were no gradients in expression along the rostrocaudal or ventrodorsal axes in the nasal cavity and olfactory bulb. However, during the early neonatal period, axons expressing different levels of ephrin-A5 sorted out and terminated in a subpopulation of glomeruli that were mosaically dispersed throughout the bulb. The expression of EphA4 and ephrin-A2 was dramatically down-regulated on all axons during the early neonatal period of glomerular formation. The uniform co-expression of receptors and ligands before glomerular formation suggests they play a generic role in axon-axon interactions in the olfactory nerve and nerve fibre layer. In contrast, loss of EphA4 from axons during glomerular formation may facilitate the interaction of ephrin-A5 with Eph receptors on target cells in the bulb. While EphA4, EphA5 and EphA7 are not mosaically expressed by bulbar neurons, other Eph receptors may have expression patterns complementary to the ephrin-A5-positive subpopulation of glomeruli. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The spectral absorption characteristics of the visual pigments in the photoreceptors of the black bream Acanthopagrus butcheri Munro (Sparidae, Teleostei), were measured using microspectrophotometry. A single cohort of fish aged 5-172 days post-hatch (dph), aquarium-reared adults and wild-caught juveniles were investigated. During the larval stage and in juveniles younger than 100 dph, two classes of visual pigment were found, with wavelengths of maximum absorbance (lambda(max)) at approximately 425 nm and 535 nm. Following double cone formation, from 40 dph onwards, the short wavelength-sensitive pigment was recorded in single cones and the longer wavelength-sensitive pigment in double cones. From 100 dph, a gradual shift in the lambda(max) towards longer wavelengths was observed in both cone types. By 160 dph, and in adults, all single cones had a lambda(max) at approximately 475 nm while the lambda(max) in double cones ranged from 545 to 575 nm. The relationships between the lambda(max) and the ratio of bandwidth:lambda(max), for changes in either chromophore or opsin, were modelled mathematically for the long-wavelength-sensitive visual pigments. Comparing our data with the models indicated that changes in lambda(max) were not mediated by a switch from an A(1) to A(2) chromophore, rather a change in opsin expression was most likely. The shifts in the lambda(max) of the visual pigments occur at a stage when the juvenile fish begin feeding in deeper, tannin-stained estuarine waters, which transmit predominantly longer wavelengths, so the spectral sensitivity changes may represent an adaptation by the fish to the changing light environment.
Resumo:
PURPOSE: To determine whether bovine corneal endothelial (BCE) cells and keratocytes express the inducible form of nitric oxide synthase (NOS) after exposure to cytokines and lipopolysaccharide (LPS), and to study the regulation of NOS by growth factors. METHODS: Cultures of bovine corneal endothelial cells and keratocytes were exposed to increasing concentrations of LPS, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha). At selected intervals after exposure, nitrite levels in the supernatants were evaluated by the Griess reaction. Total RNA was extracted from the cell cultures, and messenger RNA levels for inducible NOS (NOS-2) were measured by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: Exposure of BCE cells and keratocytes to LPS and IFN-gamma resulted in an increase of nitrite levels that was potentiate by the addition of TNF-alpha. Analysis by RT-PCR demonstrated that nitrite release was correlated to the expression of NOS-2 messenger RNA in BCE cells and keratocytes. Stereoselective inhibitors of NOS and cycloheximide inhibited LPS-IFN-gamma-induced nitrite release in both cells, whereas transforming growth factor-beta (TGF-beta) slightly potentiated it. Fibroblast growth factor-2 (FGF-2) inhibited LPS-IFN-gamma-induced nitrite release and NOS-2 messenger RNA accumulation in keratocytes but not in BCE cells. CONCLUSIONS: The results demonstrate that in vitro activation of keratocytes and BCE cells by LPS and cytokines induces NOS-2 expression and release of large amounts of NO. The high amounts of NO could be involved in inflammatory corneal diseases in vivo.
Resumo:
Purpose:In the retina, the balance between pro- and anti-angiogenic factors is critical for angiogenesis control but is also involved in cell survival and maintenance. For instance, the anti-angiogenic factor PEDF is neuroprotective for photoreceptors (PRs) in models of retinal degeneration. We previously reported upregulation of VEGF (24h to 48h post lesion) in the light-damage (LD) model. Furthermore, systemic delivery of PEDF, as well as lentiviral gene transfer of an anti-VEGF antibody rescue PRs from cell death. Studies in vitro show that VEGF induces retinal endothelial cells apoptosis via the alteration of the Akt1/p38 MAPK signalling pathway under hypoxic conditions. Thus, in this study, we investigate the effect of high levels of VEGF on retinal pigmented epithelium (RPE) permeability and molecular targets expression after light-induced PR degeneration. Methods:To characterize the action of VEGF in the retina during the course of LD, we exposed adult Balb/c mice to 5'000 lux for 1h, and we collected neural retinas and eye-cups (containing RPE) at different time points after the LD. We analysed protein expression by Elisa and Western blotting. In order to study RPE cell permeability after the LD we stained β-catenin on flat mounted RPE. Results:In the neural retina, preliminary results indicate that high levels of VEGF induce a significant upregulation of VEGF receptor 2, whereas VEGF receptor 1 expression is decreased. Concomitantly with VEGF upregulation, LD increases the Src phosphorylation between 24h to 48h. Furthermore, we observe that β-catenin translocates to the cytoplasm of RPE cells between 24h to 36h after the lesion, indicating an increase on the RPE permeability, which could contribute indirectly to the deleterious effect of VEGF observed during light-induced PR apoptosis. Conclusions:This study further involves VEGF in LD and highlights the prime importance of angiogenic factor balance for PR survival. Our results suggest that PR apoptosis is augmented by RPE cell permeability, which may induce high level of VEGF and could be deleterious. The specific action of RPE permeability on PR survival and the role of Src in the retina are under investigation.
Resumo:
1. The importance of dietary lipids for carotenoid-based ornaments has rarely been investigated, although theory predicts that dietary lipids may control the development of these widespread animal signals. Dietary lipids have been suggested to enhance the expression of male carotenoid-based ornaments because they provide carotenoids with a hydrophobic domain that facilitates their absorption and transport. Dietary lipids may also enhance the uptake of tocopherols (vitamin E), which share common absorption and transport routes with carotenoids. Here, we test whether dietary lipids enhance carotenoid availability and male carotenoid-based colorations. We also explore the effects of dietary lipids on plasma tocopherol concentration, which allow disentangling between different pathways that may explain how dietary lipids affect ornamental expression. 2. Following a two-factorial design, we manipulated dietary access of naturally occurring fatty acids (oleic acid) and carotenoids (lutein and zeaxanthin) and measured its effects on the circulating concentrations of carotenoids (lutein and zeaxanthin) and vitamin E (α- and γ-(β-) tocopherols) and on the ventral, carotenoid-based coloration of male common lizards (Lacerta vivipara). 3. Lutein but not zeaxanthin plasma concentrations increased with carotenoid supplementation, which, however, did not affect coloration. Lipid intake negatively affected circulating concentrations of lutein and γ-(β-) tocopherol and led to significantly less orange colorations. The path analysis suggests that a relationship between the observed colour change and the change in plasma concentrations of γ-(β-) tocopherol may exist. 4. Our study shows for the first time that dietary lipids do not enhance but reduce the intensity of male carotenoid-based ornaments. Although dietary lipids affected plasma carotenoid concentration, its negative effect on coloration appeared to be linked to lower vitamin E plasma concentrations. These findings suggest that a conflict between dietary lipids and carotenoid and tocopherol uptake may arise if these nutrients are independently obtained from natural diets and that such conflict may reinforce signal honesty in carotenoid-based ornaments. They also suggest that, at least in the common lizard, sexual selection with respect to carotenoid-based coloration may select for males with low antioxidant capacity and thus for males of superior health.
Resumo:
Purpose:To functionally and morphologically characterize the retina and optic nerve after transplantation of Brain-derived neurotrophic factor (BDNF) and Glial-derived neurotrophic factor (GDNF) secreting mesenchymal stem cells (MSCs) into glaucomatous rat eyes. Methods:Chronic ocular hypertension (COH) was induced in Brown Norway rats. Lentiviral constructs were used to transduce rat MSCs to produce BDNF, GDNF, or green fluorescent protein (GFP). The fellow eyes served as internal controls. Two days following COH induction, eyes received intravitreal injections of transduced MSCs. Electroretinography was performed to assess retinal function. Tonometry was performed throughout the experiment to monitor IOP. 42 days after MSC transplantation, rats were euthanized and the eyes and optic nerves were prepared for analysis. Results:Increased expression and secretion of BDNF and GDNF from lentiviral-transduced MSCs was verified using ELISA, and a bioactivity assay. Ratio metric analysis (COH eye/ Internal control eye response) of the Max combined response A-Wave showed animals with BDNF-MSCs (23.35 ± 5.15%, p=0.021) and GDNF-MSCs (28.73 ± 3.61%, p=0.025) preserved significantly more visual function than GFP-MSC treated eyes MSCs (18.05 ± 5.51%). Animals receiving BDNF-MSCs also had significantly better B-wave (33.80 ± 7.19%) and flicker ERG responses (28.52 ± 10.43%) than GFP-MSC treated animals (14.06 ± 12.67%; 3.52 ± 0.07%, respectively). Animals receiving GDNF-MSC transplants tended to have better function than animals with GFP-MSC transplants, but were not statistically significant (p=0.057 and p=0.0639). Conclusions:Mesenchymal stem cells are an excellent source of cells for autologous transplantation for the treatment of neurodegenerative diseases. We have demonstrated that lentiviral- transduced MSCs can survive following transplantation and preserve visual function in glaucomatous eyes. These results suggest that MSCs may be an ideal cellular vehicle for delivery of specific neurotrophic factors to the retina.
Resumo:
Purpose: In this study, we investigated the expression of the gene encoding beta-galactosidase (Glb)-1-like protein 3 (Glb1l3), a member of the glycosyl hydrolase 35 family, during retinal degeneration in the retinal pigment epithelium (RPE)-specific 65-kDa protein knockout (Rpe65(-/-)) mouse model of Leber congenital amaurosis (LCA). Additionally, we assessed the expression of the other members of this protein family, including beta-galactosidase-1 (Glb1), beta-galactosidase-1-like (Glb1l), and beta-galactosidase-1-like protein 2 (Glb1l2).Methods: The structural features of Glb1l3 were assessed using bioinformatic tools. mRNA expression of Glb-related genes was investigated by oligonucleotide microarray, real-time PCR, and reverse transcription (RT) -PCR. The localized expression of Glb1l3 was assessed by combined in situ hybridization and immunohistochemistry.Results: Glb1l3 was the only Glb-related member strongly downregulated in Rpe65(-/-) retinas before the onset and during progression of the disease. Glb1l3 mRNA was only expressed in the retinal layers and the RPE/choroid. The other Glb-related genes were ubiquitously expressed in different ocular tissues, including the cornea and lens. In the healthy retina, expression of Glb1l3 was strongly induced during postnatal retinal development; age-related increased expression persisted during adulthood and aging.Conclusions: These data highlight early-onset downregulation of Glb1l3 in Rpe65-related disease. They further indicate that impaired expression of Glb1l3 is mostly due to the absence of the chromophore 11-cis retinal, suggesting that Rpe65 deficiency may have many metabolic consequences in the underlying neuroretina.
Resumo:
PURPOSE: Retinal degeneration is associated with iron accumulation in several rodent models in which iron-regulating proteins are impaired. Oxidative stress is catalyzed by unbound iron. METHODS: The role of the heavy chain of ferritin, which sequesters iron, in regulating the thickness of the photoreceptor nuclear layer in the 4- and 16-month-old wild-type H ferritin (HFt(+/+)) and heterozygous H ferritin (HFt(+/-)) mice was investigated, before and 12 days after exposure to 13,000-lux light for 24 hours. The regulation of gene expression of the various proteins involved in iron homeostasis, such as transferrin, transferrin receptor, hephaestin, ferroportin, iron regulatory proteins 1 and 2, hepcidin, ceruloplasmin, and heme-oxygenase 1, was analyzed by quantitative (q)RT-PCR during exposure (2, 12, and 24 hours) and 24 hours after 1 day of exposure in the 4-month-old HFt(+/+) and HFt(+/-) mouse retinas. RESULTS: Retinal degeneration in the 4-month-old HFt(+/-) mice was more extensive than in the HFt(+/+) mice. Yet, it was more extensive in both of the 16-month-old mouse groups, revealing the combined effect of age and excessive light. Injury caused by excessive light modified the temporal gene expression of iron-regulating proteins similarly in the HFt(+/-) and HFt(+/+) mice. CONCLUSIONS: Loss of one allele of H ferritin appears to increase light-induced degeneration. This study highlighted that oxidative stress related to light-induced injury is associated with major changes in gene expression of iron metabolism proteins.