878 resultados para Vision-based row tracking algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soccer is a sport where everyone that is involved with it make all the efforts aiming for excellence. Not only the players need to show their skills on the pitch but also the coach, and the remaining staff, need to have their own tools so that they can perform at higher levels. Footdata is a project to build a new web application product for soccer (football), which integrates two fundamental components of this sport's world: the social and the professional. While the former is an enhanced social platform for soccer professionals and fans, the later can be considered as a Soccer Resource Planning, featuring a system for acquisition and processing information to meet all the soccer management needs. In this paper we focus only in a specific module of the professional component. We will describe the section of the web application that allows to analyse movements and tactics of the players using images directly taken from the pitch or from videos, we will show that it is possible to draw players and ball movements in a web application and detect if those movements occur during a game. © 2014 Springer International Publishing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soccer is a sport where everyone that is involved with it make all the efforts aiming for excellence. Not only the players need to show their skills on the pitch but also the coach, and the remaining staff, need to have their own tools so that they can perform at higher levels. Footdata is a project to build a new web application product for soccer (football), which integrates two fundamental components of this sport’s world: the social and the professional. While the former is an enhanced social platform for soccer professionals and fans, the later can be considered as a Soccer Resource Planning, featuring a system for acquisition and processing information to meet all the soccer management needs. In this paper we focus only in a specific module of the professional component. We will describe the section of the web application that allows to analyse movements and tactics of the players using images directly taken from the pitch or from videos, we will show that it is possible to draw players and ball movements in a web application and detect if those movements occur during a game.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a vision-based localization approach for an underwater robot in a structured environment. The system is based on a coded pattern placed on the bottom of a water tank and an onboard down looking camera. Main features are, absolute and map-based localization, landmark detection and tracking, and real-time computation (12.5 Hz). The proposed system provides three-dimensional position and orientation of the vehicle along with its velocity. Accuracy of the drift-free estimates is very high, allowing them to be used as feedback measures of a velocity-based low-level controller. The paper details the localization algorithm, by showing some graphical results, and the accuracy of the system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most active-contour methods are based either on maximizing the image contrast under the contour or on minimizing the sum of squared distances between contour and image 'features'. The Marginalized Likelihood Ratio (MLR) contour model uses a contrast-based measure of goodness-of-fit for the contour and thus falls into the first class. The point of departure from previous models consists in marginalizing this contrast measure over unmodelled shape variations. The MLR model naturally leads to the EM Contour algorithm, in which pose optimization is carried out by iterated least-squares, as in feature-based contour methods. The difference with respect to other feature-based algorithms is that the EM Contour algorithm minimizes squared distances from Bayes least-squares (marginalized) estimates of contour locations, rather than from 'strongest features' in the neighborhood of the contour. Within the framework of the MLR model, alternatives to the EM algorithm can also be derived: one of these alternatives is the empirical-information method. Tracking experiments demonstrate the robustness of pose estimates given by the MLR model, and support the theoretical expectation that the EM Contour algorithm is more robust than either feature-based methods or the empirical-information method. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm for tracking multiple feature positions in a dynamic image sequence is presented. This is achieved using a combination of two trajectory-based methods, with the resulting hybrid algorithm exhibiting the advantages of both. An optimizing exchange algorithm is described which enables short feature paths to be tracked without prior knowledge of the motion being studied. The resulting partial trajectories are then used to initialize a fast predictor algorithm which is capable of rapidly tracking multiple feature paths. As this predictor algorithm becomes tuned to the feature positions being tracked, it is shown how the location of occluded or poorly detected features can be predicted. The results of applying this tracking algorithm to data obtained from real-world scenes are then presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal tracking has been addressed by different initiatives over the last two decades. Most of them rely on satellite connectivity on every single node and lack of energy-saving strategies. This paper presents several new contributions on the tracking of dynamic heterogeneous asynchronous networks (primary nodes with GPS and secondary nodes with a kinetic generator) motivated by the animal tracking paradigm with random transmissions. A simple approach based on connectivity and coverage intersection is compared with more sophisticated algorithms based on ad-hoc implementations of distributed Kalman-based filters that integrate measurement information using Consensus principles in order to provide enhanced accuracy. Several simulations varying the coverage range, the random behavior of the kinetic generator (modeled as a Poisson Process) and the periodic activation of GPS are included. In addition, this study is enhanced with HW developments and implementations on commercial off-the-shelf equipment which show the feasibility for performing these proposals on real hardware.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autonomous aerial refueling is a key enabling technology for both manned and unmanned aircraft where extended flight duration or range are required. The results presented within this paper offer one potential vision-based sensing solution, together with a unique test environment. A hierarchical visual tracking algorithm based on direct methods is proposed and developed for the purposes of tracking a drogue during the capture stage of autonomous aerial refueling, and of estimating its 3D position. Intended to be applied in real time to a video stream from a single monocular camera mounted on the receiver aircraft, the algorithm is shown to be highly robust, and capable of tracking large, rapid drogue motions within the frame of reference. The proposed strategy has been tested using a complex robotic testbed and with actual flight hardware consisting of a full size probe and drogue. Results show that the vision tracking algorithm can detect and track the drogue at real-time frame rates of more than thirty frames per second, obtaining a robust position estimation even with strong motions and multiple occlusions of the drogue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we apply a hierarchical tracking strategy of planar objects (or that can be assumed to be planar) that is based on direct methods for vision-based applications on-board UAVs. The use of this tracking strategy allows to achieve the tasks at real-time frame rates and to overcome problems posed by the challenging conditions of the tasks: e.g. constant vibrations, fast 3D changes, or limited capacity on-board. The vast majority of approaches make use of feature-based methods to track objects. Nonetheless, in this paper we show that although some of these feature-based solutions are faster, direct methods can be more robust under fast 3D motions (fast changes in position), some changes in appearance, constant vibrations (without requiring any specific hardware or software for video stabilization), and situations in which part of the object to track is outside of the field of view of the camera. The performance of the proposed tracking strategy on-board UAVs is evaluated with images from realflight tests using manually-generated ground truth information, accurate position estimation using a Vicon system, and also with simulated data from a simulation environment. Results show that the hierarchical tracking strategy performs better than wellknown feature-based algorithms and well-known configurations of direct methods, and that its performance is robust enough for vision-in-the-loop tasks, e.g. for vision-based landing tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of vision-based systems for Sense-and-Avoid is increasing nowadays as remotely piloted and autonomous UAVs become part of the non-segregated airspace. The development and evaluation of these systems demand flight scenario images which are expensive and risky to obtain. Currently Augmented Reality techniques allow the compositing of real flight scenario images with 3D aircraft models to produce useful realistic images for system development and benchmarking purposes at a much lower cost and risk. With the techniques presented in this paper, 3D aircraft models are positioned firstly in a simulated 3D scene with controlled illumination and rendering parameters. Realistic simulated images are then obtained using an image processing algorithm which fuses the images obtained from the 3D scene with images from real UAV flights taking into account on board camera vibrations. Since the intruder and camera poses are user-defined, ground truth data is available. These ground truth annotations allow to develop and quantitatively evaluate aircraft detection and tracking algorithms. This paper presents the software developed to create a public dataset of 24 videos together with their annotations and some tracking application results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El principal objetivo de este trabajo es proporcionar una solución en tiempo real basada en visión estéreo o monocular precisa y robusta para que un vehículo aéreo no tripulado (UAV) sea autónomo en varios tipos de aplicaciones UAV, especialmente en entornos abarrotados sin señal GPS. Este trabajo principalmente consiste en tres temas de investigación de UAV basados en técnicas de visión por computador: (I) visual tracking, proporciona soluciones efectivas para localizar visualmente objetos de interés estáticos o en movimiento durante el tiempo que dura el vuelo del UAV mediante una aproximación adaptativa online y una estrategia de múltiple resolución, de este modo superamos los problemas generados por las diferentes situaciones desafiantes, tales como cambios significativos de aspecto, iluminación del entorno variante, fondo del tracking embarullado, oclusión parcial o total de objetos, variaciones rápidas de posición y vibraciones mecánicas a bordo. La solución ha sido utilizada en aterrizajes autónomos, inspección de plataformas mar adentro o tracking de aviones en pleno vuelo para su detección y evasión; (II) odometría visual: proporciona una solución eficiente al UAV para estimar la posición con 6 grados de libertad (6D) usando únicamente la entrada de una cámara estéreo a bordo del UAV. Un método Semi-Global Blocking Matching (SGBM) eficiente basado en una estrategia grueso-a-fino ha sido implementada para una rápida y profunda estimación del plano. Además, la solución toma provecho eficazmente de la información 2D y 3D para estimar la posición 6D, resolviendo de esta manera la limitación de un punto de referencia fijo en la cámara estéreo. Una robusta aproximación volumétrica de mapping basada en el framework Octomap ha sido utilizada para reconstruir entornos cerrados y al aire libre bastante abarrotados en 3D con memoria y errores correlacionados espacialmente o temporalmente; (III) visual control, ofrece soluciones de control prácticas para la navegación de un UAV usando Fuzzy Logic Controller (FLC) con la estimación visual. Y el framework de Cross-Entropy Optimization (CEO) ha sido usado para optimizar el factor de escala y la función de pertenencia en FLC. Todas las soluciones basadas en visión en este trabajo han sido probadas en test reales. Y los conjuntos de datos de imágenes reales grabados en estos test o disponibles para la comunidad pública han sido utilizados para evaluar el rendimiento de estas soluciones basadas en visión con ground truth. Además, las soluciones de visión presentadas han sido comparadas con algoritmos de visión del estado del arte. Los test reales y los resultados de evaluación muestran que las soluciones basadas en visión proporcionadas han obtenido rendimientos en tiempo real precisos y robustos, o han alcanzado un mejor rendimiento que aquellos algoritmos del estado del arte. La estimación basada en visión ha ganado un rol muy importante en controlar un UAV típico para alcanzar autonomía en aplicaciones UAV. ABSTRACT The main objective of this dissertation is providing real-time accurate robust monocular or stereo vision-based solution for Unmanned Aerial Vehicle (UAV) to achieve the autonomy in various types of UAV applications, especially in GPS-denied dynamic cluttered environments. This dissertation mainly consists of three UAV research topics based on computer vision technique: (I) visual tracking, it supplys effective solutions to visually locate interesting static or moving object over time during UAV flight with on-line adaptivity approach and multiple-resolution strategy, thereby overcoming the problems generated by the different challenging situations, such as significant appearance change, variant surrounding illumination, cluttered tracking background, partial or full object occlusion, rapid pose variation and onboard mechanical vibration. The solutions have been utilized in autonomous landing, offshore floating platform inspection and midair aircraft tracking for sense-and-avoid; (II) visual odometry: it provides the efficient solution for UAV to estimate the 6 Degree-of-freedom (6D) pose using only the input of stereo camera onboard UAV. An efficient Semi-Global Blocking Matching (SGBM) method based on a coarse-to-fine strategy has been implemented for fast depth map estimation. In addition, the solution effectively takes advantage of both 2D and 3D information to estimate the 6D pose, thereby solving the limitation of a fixed small baseline in the stereo camera. A robust volumetric occupancy mapping approach based on the Octomap framework has been utilized to reconstruct indoor and outdoor large-scale cluttered environments in 3D with less temporally or spatially correlated measurement errors and memory; (III) visual control, it offers practical control solutions to navigate UAV using Fuzzy Logic Controller (FLC) with the visual estimation. And the Cross-Entropy Optimization (CEO) framework has been used to optimize the scaling factor and the membership function in FLC. All the vision-based solutions in this dissertation have been tested in real tests. And the real image datasets recorded from these tests or available from public community have been utilized to evaluate the performance of these vision-based solutions with ground truth. Additionally, the presented vision solutions have compared with the state-of-art visual algorithms. Real tests and evaluation results show that the provided vision-based solutions have obtained real-time accurate robust performances, or gained better performance than those state-of-art visual algorithms. The vision-based estimation has played a critically important role for controlling a typical UAV to achieve autonomy in the UAV application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the world of professional sports shifting towards employing better sport analytics, the demand for vision-based performance analysis is growing increasingly in recent years. In addition, the nature of many sports does not allow the use of any kind of sensors or other wearable markers attached to players for monitoring their performances during competitions. This provides a potential application of systematic observations such as tracking information of the players to help coaches to develop their visual skills and perceptual awareness needed to make decisions about team strategy or training plans. My PhD project is part of a bigger ongoing project between sport scientists and computer scientists involving also industry partners and sports organisations. The overall idea is to investigate the contribution technology can make to the analysis of sports performance on the example of team sports such as rugby, football or hockey. A particular focus is on vision-based tracking, so that information about the location and dynamics of the players can be gained without any additional sensors on the players. To start with, prior approaches on visual tracking are extensively reviewed and analysed. In this thesis, methods to deal with the difficulties in visual tracking to handle the target appearance changes caused by intrinsic (e.g. pose variation) and extrinsic factors, such as occlusion, are proposed. This analysis highlights the importance of the proposed visual tracking algorithms, which reflect these challenges and suggest robust and accurate frameworks to estimate the target state in a complex tracking scenario such as a sports scene, thereby facilitating the tracking process. Next, a framework for continuously tracking multiple targets is proposed. Compared to single target tracking, multi-target tracking such as tracking the players on a sports field, poses additional difficulties, namely data association, which needs to be addressed. Here, the aim is to locate all targets of interest, inferring their trajectories and deciding which observation corresponds to which target trajectory is. In this thesis, an efficient framework is proposed to handle this particular problem, especially in sport scenes, where the players of the same team tend to look similar and exhibit complex interactions and unpredictable movements resulting in matching ambiguity between the players. The presented approach is also evaluated on different sports datasets and shows promising results. Finally, information from the proposed tracking system is utilised as the basic input for further higher level performance analysis such as tactics and team formations, which can help coaches to design a better training plan. Due to the continuous nature of many team sports (e.g. soccer, hockey), it is not straightforward to infer the high-level team behaviours, such as players’ interaction. The proposed framework relies on two distinct levels of performance analysis: low-level performance analysis, such as identifying players positions on the play field, as well as a high-level analysis, where the aim is to estimate the density of player locations or detecting their possible interaction group. The related experiments show the proposed approach can effectively explore this high-level information, which has many potential applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following paper proposes a novel application of Skid-to-Turn maneuvers for fixed wing Unmanned Aerial Vehicles (UAVs) inspecting locally linear infrastructure. Fixed wing UAVs, following the design of manned aircraft, commonly employ Bank-to-Turn ma- neuvers to change heading and thus direction of travel. Whilst effective, banking an aircraft during the inspection of ground based features hinders data collection, with body fixed sen- sors angled away from the direction of turn and a panning motion induced through roll rate that can reduce data quality. By adopting Skid-to-Turn maneuvers, the aircraft can change heading whilst maintaining wings level flight, thus allowing body fixed sensors to main- tain a downward facing orientation. An Image-Based Visual Servo controller is developed to directly control the position of features as captured by onboard inspection sensors. This improves on the indirect approach taken by other tracking controllers where a course over ground directly above the feature is assumed to capture it centered in the field of view. Performance of the proposed controller is compared against that of a Bank-to-Turn tracking controller driven by GPS derived cross track error in a simulation environment developed to replicate the field of view of a body fixed camera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer vision is an attractive solution for uninhabited aerial vehicle (UAV) collision avoidance, due to the low weight, size and power requirements of hardware. A two-stage paradigm has emerged in the literature for detection and tracking of dim targets in images, comprising of spatial preprocessing, followed by temporal filtering. In this paper, we investigate a hidden Markov model (HMM) based temporal filtering approach. Specifically, we propose an adaptive HMM filter, in which the variance of model parameters is refined as the quality of the target estimate improves. Filters with high variance (fat filters) are used for target acquisition, and filters with low variance (thin filters) are used for target tracking. The adaptive filter is tested in simulation and with real data (video of a collision-course aircraft). Our test results demonstrate that our adaptive filtering approach has improved tracking performance, and provides an estimate of target heading not present in previous HMM filtering approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following paper proposes a novel application of Skid-to-Turn maneuvers for fixed wing Unmanned Aerial Vehicles (UAVs) inspecting locally linear infrastructure. Fixed wing UAVs, following the design of manned aircraft, traditionally employ Bank-to-Turn maneuvers to change heading and thus direction of travel. Commonly overlooked is the effect these maneuvers have on downward facing body fixed sensors, which as a result of bank, point away from the feature during turns. By adopting Skid-to-Turn maneuvers, the aircraft is able change heading whilst maintaining wings level flight, thus allowing body fixed sensors to maintain a downward facing orientation. Eliminating roll also helps to improve data quality, as sensors are no longer subjected to the swinging motion induced as they pivot about an axis perpendicular to their line of sight. Traditional tracking controllers that apply an indirect approach of capturing ground based data by flying directly overhead can also see the feature off center due to steady state pitch and roll required to stay on course. An Image Based Visual Servo controller is developed to address this issue, allowing features to be directly tracked within the image plane. Performance of the proposed controller is tested against that of a Bank-to-Turn tracking controller driven by GPS derived cross track error in a simulation environment developed to simulate the field of view of a body fixed camera.