831 resultados para Vision, Monocular.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photo-mosaicing techniques have become popular for seafloor mapping in various marine science applications. However, the common methods cannot accurately map regions with high relief and topographical variations. Ortho-mosaicing borrowed from photogrammetry is an alternative technique that enables taking into account the 3-D shape of the terrain. A serious bottleneck is the volume of elevation information that needs to be estimated from the video data, fused, and processed for the generation of a composite ortho-photo that covers a relatively large seafloor area. We present a framework that combines the advantages of dense depth-map and 3-D feature estimation techniques based on visual motion cues. The main goal is to identify and reconstruct certain key terrain feature points that adequately represent the surface with minimal complexity in the form of piecewise planar patches. The proposed implementation utilizes local depth maps for feature selection, while tracking over several views enables 3-D reconstruction by bundle adjustment. Experimental results with synthetic and real data validate the effectiveness of the proposed approach

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIRES, Kelson R. T. ; ARAÚJO, Hélder J. ; MEDEIROS, Adelardo A. D. . Plane Detection from Monocular Image Sequences. In: VISUALIZATION, IMAGING AND IMAGE PROCESSING, 2008, Palma de Mallorca, Spain. Proceedings..., Palma de Mallorca: VIIP, 2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this work is to propose a SLAM (Simultaneous Localization and Mapping) solution based on Extended Kalman Filter (EKF) in order to make possible a robot navigates along the environment using information from odometry and pre-existing lines on the floor. Initially, a segmentation step is necessary to classify parts of the image in floor or non floor . Then the image processing identifies floor lines and the parameters of these lines are mapped to world using a homography matrix. Finally, the identified lines are used in SLAM as landmarks in order to build a feature map. In parallel, using the corrected robot pose, the uncertainty about the pose and also the part non floor of the image, it is possible to build an occupancy grid map and generate a metric map with the obstacle s description. A greater autonomy for the robot is attained by using the two types of obtained map (the metric map and the features map). Thus, it is possible to run path planning tasks in parallel with localization and mapping. Practical results are presented to validate the proposal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development and refinement of techniques that make simultaneous localization and mapping (SLAM) for an autonomous mobile robot and the building of local 3-D maps from a sequence of images, is widely studied in scientific circles. This work presents a monocular visual SLAM technique based on extended Kalman filter, which uses features found in a sequence of images using the SURF descriptor (Speeded Up Robust Features) and determines which features can be used as marks by a technique based on delayed initialization from 3-D straight lines. For this, only the coordinates of the features found in the image and the intrinsic and extrinsic camera parameters are avaliable. Its possible to determine the position of the marks only on the availability of information of depth. Tests have shown that during the route, the mobile robot detects the presence of characteristics in the images and through a proposed technique for delayed initialization of marks, adds new marks to the state vector of the extended Kalman filter (EKF), after estimating the depth of features. With the estimated position of the marks, it was possible to estimate the updated position of the robot at each step, obtaining good results that demonstrate the effectiveness of monocular visual SLAM system proposed in this paper

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a hybrid method to track human motions in real-time. With simplified marker sets and monocular video input, the strength of both marker-based and marker-free motion capturing are utilized: A cumbersome marker calibration is avoided while the robustness of the marker-free tracking is enhanced by referencing the tracked marker positions. An improved inverse kinematics solver is employed for real-time pose estimation. A computer-visionbased approach is applied to refine the pose estimation and reduce the ambiguity of the inverse kinematics solutions. We use this hybrid method to capture typical table tennis upper body movements in a real-time virtual reality application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En esta tesis se aborda la detección y el seguimiento automático de vehículos mediante técnicas de visión artificial con una cámara monocular embarcada. Este problema ha suscitado un gran interés por parte de la industria automovilística y de la comunidad científica ya que supone el primer paso en aras de la ayuda a la conducción, la prevención de accidentes y, en última instancia, la conducción automática. A pesar de que se le ha dedicado mucho esfuerzo en los últimos años, de momento no se ha encontrado ninguna solución completamente satisfactoria y por lo tanto continúa siendo un tema de investigación abierto. Los principales problemas que plantean la detección y seguimiento mediante visión artificial son la gran variabilidad entre vehículos, un fondo que cambia dinámicamente debido al movimiento de la cámara, y la necesidad de operar en tiempo real. En este contexto, esta tesis propone un marco unificado para la detección y seguimiento de vehículos que afronta los problemas descritos mediante un enfoque estadístico. El marco se compone de tres grandes bloques, i.e., generación de hipótesis, verificación de hipótesis, y seguimiento de vehículos, que se llevan a cabo de manera secuencial. No obstante, se potencia el intercambio de información entre los diferentes bloques con objeto de obtener el máximo grado posible de adaptación a cambios en el entorno y de reducir el coste computacional. Para abordar la primera tarea de generación de hipótesis, se proponen dos métodos complementarios basados respectivamente en el análisis de la apariencia y la geometría de la escena. Para ello resulta especialmente interesante el uso de un dominio transformado en el que se elimina la perspectiva de la imagen original, puesto que este dominio permite una búsqueda rápida dentro de la imagen y por tanto una generación eficiente de hipótesis de localización de los vehículos. Los candidatos finales se obtienen por medio de un marco colaborativo entre el dominio original y el dominio transformado. Para la verificación de hipótesis se adopta un método de aprendizaje supervisado. Así, se evalúan algunos de los métodos de extracción de características más populares y se proponen nuevos descriptores con arreglo al conocimiento de la apariencia de los vehículos. Para evaluar la efectividad en la tarea de clasificación de estos descriptores, y dado que no existen bases de datos públicas que se adapten al problema descrito, se ha generado una nueva base de datos sobre la que se han realizado pruebas masivas. Finalmente, se presenta una metodología para la fusión de los diferentes clasificadores y se plantea una discusión sobre las combinaciones que ofrecen los mejores resultados. El núcleo del marco propuesto está constituido por un método Bayesiano de seguimiento basado en filtros de partículas. Se plantean contribuciones en los tres elementos fundamentales de estos filtros: el algoritmo de inferencia, el modelo dinámico y el modelo de observación. En concreto, se propone el uso de un método de muestreo basado en MCMC que evita el elevado coste computacional de los filtros de partículas tradicionales y por consiguiente permite que el modelado conjunto de múltiples vehículos sea computacionalmente viable. Por otra parte, el dominio transformado mencionado anteriormente permite la definición de un modelo dinámico de velocidad constante ya que se preserva el movimiento suave de los vehículos en autopistas. Por último, se propone un modelo de observación que integra diferentes características. En particular, además de la apariencia de los vehículos, el modelo tiene en cuenta también toda la información recibida de los bloques de procesamiento previos. El método propuesto se ejecuta en tiempo real en un ordenador de propósito general y da unos resultados sobresalientes en comparación con los métodos tradicionales. ABSTRACT This thesis addresses on-road vehicle detection and tracking with a monocular vision system. This problem has attracted the attention of the automotive industry and the research community as it is the first step for driver assistance and collision avoidance systems and for eventual autonomous driving. Although many effort has been devoted to address it in recent years, no satisfactory solution has yet been devised and thus it is an active research issue. The main challenges for vision-based vehicle detection and tracking are the high variability among vehicles, the dynamically changing background due to camera motion and the real-time processing requirement. In this thesis, a unified approach using statistical methods is presented for vehicle detection and tracking that tackles these issues. The approach is divided into three primary tasks, i.e., vehicle hypothesis generation, hypothesis verification, and vehicle tracking, which are performed sequentially. Nevertheless, the exchange of information between processing blocks is fostered so that the maximum degree of adaptation to changes in the environment can be achieved and the computational cost is alleviated. Two complementary strategies are proposed to address the first task, i.e., hypothesis generation, based respectively on appearance and geometry analysis. To this end, the use of a rectified domain in which the perspective is removed from the original image is especially interesting, as it allows for fast image scanning and coarse hypothesis generation. The final vehicle candidates are produced using a collaborative framework between the original and the rectified domains. A supervised classification strategy is adopted for the verification of the hypothesized vehicle locations. In particular, state-of-the-art methods for feature extraction are evaluated and new descriptors are proposed by exploiting the knowledge on vehicle appearance. Due to the lack of appropriate public databases, a new database is generated and the classification performance of the descriptors is extensively tested on it. Finally, a methodology for the fusion of the different classifiers is presented and the best combinations are discussed. The core of the proposed approach is a Bayesian tracking framework using particle filters. Contributions are made on its three key elements: the inference algorithm, the dynamic model and the observation model. In particular, the use of a Markov chain Monte Carlo method is proposed for sampling, which circumvents the exponential complexity increase of traditional particle filters thus making joint multiple vehicle tracking affordable. On the other hand, the aforementioned rectified domain allows for the definition of a constant-velocity dynamic model since it preserves the smooth motion of vehicles in highways. Finally, a multiple-cue observation model is proposed that not only accounts for vehicle appearance but also integrates the available information from the analysis in the previous blocks. The proposed approach is proven to run near real-time in a general purpose PC and to deliver outstanding results compared to traditional methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autonomous aerial refueling is a key enabling technology for both manned and unmanned aircraft where extended flight duration or range are required. The results presented within this paper offer one potential vision-based sensing solution, together with a unique test environment. A hierarchical visual tracking algorithm based on direct methods is proposed and developed for the purposes of tracking a drogue during the capture stage of autonomous aerial refueling, and of estimating its 3D position. Intended to be applied in real time to a video stream from a single monocular camera mounted on the receiver aircraft, the algorithm is shown to be highly robust, and capable of tracking large, rapid drogue motions within the frame of reference. The proposed strategy has been tested using a complex robotic testbed and with actual flight hardware consisting of a full size probe and drogue. Results show that the vision tracking algorithm can detect and track the drogue at real-time frame rates of more than thirty frames per second, obtaining a robust position estimation even with strong motions and multiple occlusions of the drogue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose an innovative method for the automatic detection and tracking of road traffic signs using an onboard stereo camera. It involves a combination of monocular and stereo analysis strategies to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. Firstly, an adaptive color and appearance based detection is applied at single camera level to generate a set of traffic sign hypotheses. In turn, stereo information allows for sparse 3D reconstruction of potential traffic signs through a SURF-based matching strategy. Namely, the plane that best fits the cloud of 3D points traced back from feature matches is estimated using a RANSAC based approach to improve robustness to outliers. Temporal consistency of the 3D information is ensured through a Kalman-based tracking stage. This also allows for the generation of a predicted 3D traffic sign model, which is in turn used to enhance the previously mentioned color-based detector through a feedback loop, thus improving detection accuracy. The proposed solution has been tested with real sequences under several illumination conditions and in both urban areas and highways, achieving very high detection rates in challenging environments, including rapid motion and significant perspective distortion

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El principal objetivo de este trabajo es proporcionar una solución en tiempo real basada en visión estéreo o monocular precisa y robusta para que un vehículo aéreo no tripulado (UAV) sea autónomo en varios tipos de aplicaciones UAV, especialmente en entornos abarrotados sin señal GPS. Este trabajo principalmente consiste en tres temas de investigación de UAV basados en técnicas de visión por computador: (I) visual tracking, proporciona soluciones efectivas para localizar visualmente objetos de interés estáticos o en movimiento durante el tiempo que dura el vuelo del UAV mediante una aproximación adaptativa online y una estrategia de múltiple resolución, de este modo superamos los problemas generados por las diferentes situaciones desafiantes, tales como cambios significativos de aspecto, iluminación del entorno variante, fondo del tracking embarullado, oclusión parcial o total de objetos, variaciones rápidas de posición y vibraciones mecánicas a bordo. La solución ha sido utilizada en aterrizajes autónomos, inspección de plataformas mar adentro o tracking de aviones en pleno vuelo para su detección y evasión; (II) odometría visual: proporciona una solución eficiente al UAV para estimar la posición con 6 grados de libertad (6D) usando únicamente la entrada de una cámara estéreo a bordo del UAV. Un método Semi-Global Blocking Matching (SGBM) eficiente basado en una estrategia grueso-a-fino ha sido implementada para una rápida y profunda estimación del plano. Además, la solución toma provecho eficazmente de la información 2D y 3D para estimar la posición 6D, resolviendo de esta manera la limitación de un punto de referencia fijo en la cámara estéreo. Una robusta aproximación volumétrica de mapping basada en el framework Octomap ha sido utilizada para reconstruir entornos cerrados y al aire libre bastante abarrotados en 3D con memoria y errores correlacionados espacialmente o temporalmente; (III) visual control, ofrece soluciones de control prácticas para la navegación de un UAV usando Fuzzy Logic Controller (FLC) con la estimación visual. Y el framework de Cross-Entropy Optimization (CEO) ha sido usado para optimizar el factor de escala y la función de pertenencia en FLC. Todas las soluciones basadas en visión en este trabajo han sido probadas en test reales. Y los conjuntos de datos de imágenes reales grabados en estos test o disponibles para la comunidad pública han sido utilizados para evaluar el rendimiento de estas soluciones basadas en visión con ground truth. Además, las soluciones de visión presentadas han sido comparadas con algoritmos de visión del estado del arte. Los test reales y los resultados de evaluación muestran que las soluciones basadas en visión proporcionadas han obtenido rendimientos en tiempo real precisos y robustos, o han alcanzado un mejor rendimiento que aquellos algoritmos del estado del arte. La estimación basada en visión ha ganado un rol muy importante en controlar un UAV típico para alcanzar autonomía en aplicaciones UAV. ABSTRACT The main objective of this dissertation is providing real-time accurate robust monocular or stereo vision-based solution for Unmanned Aerial Vehicle (UAV) to achieve the autonomy in various types of UAV applications, especially in GPS-denied dynamic cluttered environments. This dissertation mainly consists of three UAV research topics based on computer vision technique: (I) visual tracking, it supplys effective solutions to visually locate interesting static or moving object over time during UAV flight with on-line adaptivity approach and multiple-resolution strategy, thereby overcoming the problems generated by the different challenging situations, such as significant appearance change, variant surrounding illumination, cluttered tracking background, partial or full object occlusion, rapid pose variation and onboard mechanical vibration. The solutions have been utilized in autonomous landing, offshore floating platform inspection and midair aircraft tracking for sense-and-avoid; (II) visual odometry: it provides the efficient solution for UAV to estimate the 6 Degree-of-freedom (6D) pose using only the input of stereo camera onboard UAV. An efficient Semi-Global Blocking Matching (SGBM) method based on a coarse-to-fine strategy has been implemented for fast depth map estimation. In addition, the solution effectively takes advantage of both 2D and 3D information to estimate the 6D pose, thereby solving the limitation of a fixed small baseline in the stereo camera. A robust volumetric occupancy mapping approach based on the Octomap framework has been utilized to reconstruct indoor and outdoor large-scale cluttered environments in 3D with less temporally or spatially correlated measurement errors and memory; (III) visual control, it offers practical control solutions to navigate UAV using Fuzzy Logic Controller (FLC) with the visual estimation. And the Cross-Entropy Optimization (CEO) framework has been used to optimize the scaling factor and the membership function in FLC. All the vision-based solutions in this dissertation have been tested in real tests. And the real image datasets recorded from these tests or available from public community have been utilized to evaluate the performance of these vision-based solutions with ground truth. Additionally, the presented vision solutions have compared with the state-of-art visual algorithms. Real tests and evaluation results show that the provided vision-based solutions have obtained real-time accurate robust performances, or gained better performance than those state-of-art visual algorithms. The vision-based estimation has played a critically important role for controlling a typical UAV to achieve autonomy in the UAV application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of neurons in the primary visual cortex of primates can be activated by stimulation of either eye; moreover, the monocular receptive fields of such neurons are located in about the same region of visual space. These well-known facts imply that binocular convergence in visual cortex can explain our cyclopean view of the world. To test the adequacy of this assumption, we examined how human subjects integrate binocular events in time. Light flashes presented synchronously to both eyes were compared to flashes presented alternately (asynchronously) to one eye and then the other. Subjects perceived very-low-frequency (2 Hz) asynchronous trains as equivalent to synchronous trains flashed at twice the frequency (the prediction based on binocular convergence). However, at higher frequencies of presentation (4-32 Hz), subjects perceived asynchronous and synchronous trains to be increasingly similar. Indeed, at the flicker-fusion frequency (approximately 50 Hz), the apparent difference between the two conditions was only 2%. We suggest that the explanation of these anomalous findings is that we parse visual input into sequential episodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grove, Gillam, and Ono [Grove, P. M., Gillam, B. J., & Ono, H. (2002). Content and context. of monocular regions determine perceived depth in random dot, unpaired background and phantom stereograms. Vision Research, 42, 1859-1870] reported that perceived depth in monocular gap stereograms [Gillam, B. J., Blackburn, S., & Nakayama, K. (1999). Stereopsis based on monocular gaps: Metrical encoding of depth and slant without matching contours. Vision Research, 39, 493-502] was attenuated when the color/texture in the monocular gap did not match the background. It appears that continuation of the gap with the background constitutes an important component of the stimulus conditions that allow a monocular gap in an otherwise binocular surface to be responded to as a depth step. In this report we tested this view using the conventional monocular gap stimulus of two identical grey rectangles separated by a gap in one eye but abutting to form a solid grey rectangle in the other. We compared depth seen at the gap for this stimulus with stimuli that were identical except for two additional small black squares placed at the ends of the gap. If the squares were placed stereoscopically behind the rectangle/gap configuration (appearing on the background) they interfered with the perceived depth at the gap. However when they were placed in front of the configuration this attenuation disappeared. The gap and the background were able under these conditions to complete amodally. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fundamental problem for any visual system with binocular overlap is the combination of information from the two eyes. Electrophysiology shows that binocular integration of luminance contrast occurs early in visual cortex, but a specific systems architecture has not been established for human vision. Here, we address this by performing binocular summation and monocular, binocular, and dichoptic masking experiments for horizontal 1 cycle per degree test and masking gratings. These data reject three previously published proposals, each of which predict too little binocular summation and insufficient dichoptic facilitation. However, a simple development of one of the rejected models (the twin summation model) and a completely new model (the two-stage model) provide very good fits to the data. Two features common to both models are gently accelerating (almost linear) contrast transduction prior to binocular summation and suppressive ocular interactions that contribute to contrast gain control. With all model parameters fixed, both models correctly predict (1) systematic variation in psychometric slopes, (2) dichoptic contrast matching, and (3) high levels of binocular summation for various levels of binocular pedestal contrast. A review of evidence from elsewhere leads us to favor the two-stage model. © 2006 ARVO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human visual system combines contrast information from the two eyes to produce a single cyclopean representation of the external world. This task requires both summation of congruent images and inhibition of incongruent images across the eyes. These processes were explored psychophysically using narrowband sinusoidal grating stimuli. Initial experiments focussed on binocular interactions within a single detecting mechanism, using contrast discrimination and contrast matching tasks. Consistent with previous findings, dichoptic presentation produced greater masking than monocular or binocular presentation. Four computational models were compared, two of which performed well on all data sets. Suppression between mechanisms was then investigated, using orthogonal and oblique stimuli. Two distinct suppressive pathways were identified, corresponding to monocular and dichoptic presentation. Both pathways impact prior to binocular summation of signals, and differ in their strengths, tuning, and response to adaptation, consistent with recent single-cell findings in cat. Strikingly, the magnitude of dichoptic masking was found to be spatiotemporally scale invariant, whereas monocular masking was dependent on stimulus speed. Interocular suppression was further explored using a novel manipulation, whereby stimuli were presented in dichoptic antiphase. Consistent with the predictions of a computational model, this produced weaker masking than in-phase presentation. This allowed the bandwidths of suppression to be measured without the complicating factor of additive combination of mask and test. Finally, contrast vision in strabismic amblyopia was investigated. Although amblyopes are generally believed to have impaired binocular vision, binocular summation was shown to be intact when stimuli were normalized for interocular sensitivity differences. An alternative account of amblyopia was developed, in which signals in the affected eye are subject to attenuation and additive noise prior to binocular combination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last ten years our understanding of early spatial vision has improved enormously. The long-standing model of probability summation amongst multiple independent mechanisms with static output nonlinearities responsible for masking is obsolete. It has been replaced by a much more complex network of additive, suppressive, and facilitatory interactions and nonlinearities across eyes, area, spatial frequency, and orientation that extend well beyond the classical recep-tive field (CRF). A review of a substantial body of psychophysical work performed by ourselves (20 papers), and others, leads us to the following tentative account of the processing path for signal contrast. The first suppression stage is monocular, isotropic, non-adaptable, accelerates with RMS contrast, most potent for low spatial and high temporal frequencies, and extends slightly beyond the CRF. Second and third stages of suppression are difficult to disentangle but are possibly pre- and post-binocular summation, and involve components that are scale invariant, isotropic, anisotropic, chromatic, achromatic, adaptable, interocular, substantially larger than the CRF, and saturated by contrast. The monocular excitatory pathways begin with half-wave rectification, followed by a preliminary stage of half-binocular summation, a square-law transducer, full binocular summation, pooling over phase, cross-mechanism facilitatory interactions, additive noise, linear summation over area, and a slightly uncertain decision-maker. The purpose of each of these interactions is far from clear, but the system benefits from area and binocular summation of weak contrast signals as well as area and ocularity invariances above threshold (a herd of zebras doesn't change its contrast when it increases in number or when you close one eye). One of many remaining challenges is to determine the stage or stages of spatial tuning in the excitatory pathway.