736 resultados para Violation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the prospects for observing CP violation in the minimal supersymmetric extension of the Standard Model (MSSM) with six CP-violating parameters, three gaugino mass phases and three phases in trilinear soft supersymmetry-breaking parameters, using the CPsuperH code combined with a geometric approach to maximise CP-violating observables subject to the experimental upper bounds on electric dipole moments. We also implement CP-conserving constraints from Higgs physics, flavour physics and the upper limits on the cosmological dark matter density and spin-independent scattering. We study possible values of observables within the constrained MSSM (CMSSM), the non-universal Higgs model (NUHM), the CPX scenario and a variant of the phenomenological MSSM (pMSSM). We find values of the CP-violating asymmetry A(CP) in b -> s gamma decay that may be as large as 3 %, so future measurements of ACP may provide independent information about CP violation in the MSSM. We find that CP-violating MSSM contributions to the B-s meson mass mixing term Delta M-Bs are in general below the present upper limit, which is dominated by theoretical uncertainties. If these could be reduced, Delta M-Bs could also provide an interesting and complementary constraint on the six CP-violating MSSM phases, enabling them all to be determined experimentally, in principle. We also find that CP violation in the h(2,3)tau(+)tau(-) and h(2,3) (t) over bart couplings can be quite large, and so may offer interesting prospects for future pp, e(+) e(-), mu(+) mu(-) and gamma gamma colliders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is by now clear that the infrared sector of quantum electrodynamics (QED) has an intriguingly complex structure. Based on earlier pioneering work on this subject, two of us recently proposed a simple modification of QED by constructing a generalization of the U(1) charge group of QED to the ``Sky'' group incorporating the well-known spontaneous Lorentz violation due to infrared photons, but still compatible in particular with locality (Balachandran and Vaidya, Eur Phys J Plus 128:118, 2013). It was shown that the ``Sky'' group is generated by the algebra of angle-dependent charges and a study of its superselection sectors has revealed a manifest description of spontaneous breaking of the Lorentz symmetry. We further elaborate this approach here and investigate in some detail the properties of charged particles dressed by the infrared photons. We find that Lorentz violation due to soft photons may be manifestly codified in an angle-dependent fermion mass, modifying therefore the fermion dispersion relations. The fact that the masses of the charged particles are not Lorentz invariant affects their spin content, and time dilation formulas for decays should also get corrections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes simple extensions of the standard model with new sources of baryon number violation but no proton decay. The motivation for constructing such theories comes from the shortcomings of the standard model to explain the generation of baryon asymmetry in the universe, and from the absence of experimental evidence for proton decay. However, lack of any direct evidence for baryon number violation in general puts strong bounds on the naturalness of some of those models and favors theories with suppressed baryon number violation below the TeV scale. The initial part of the thesis concentrates on investigating models containing new scalars responsible for baryon number breaking. A model with new color sextet scalars is analyzed in more detail. Apart from generating cosmological baryon number, it gives nontrivial predictions for the neutron-antineutron oscillations, the electric dipole moment of the neutron, and neutral meson mixing. The second model discussed in the thesis contains a new scalar leptoquark. Although this model predicts mainly lepton flavor violation and a nonzero electric dipole moment of the electron, it includes, in its original form, baryon number violating nonrenormalizable dimension-five operators triggering proton decay. Imposing an appropriate discrete symmetry forbids such operators. Finally, a supersymmetric model with gauged baryon and lepton numbers is proposed. It provides a natural explanation for proton stability and predicts lepton number violating processes below the supersymmetry breaking scale, which can be tested at the Large Hadron Collider. The dark matter candidate in this model carries baryon number and can be searched for in direct detection experiments as well. The thesis is completed by constructing and briefly discussing a minimal extension of the standard model with gauged baryon, lepton, and flavor symmetries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Qubit measurement by mesoscopic charge detectors has received great interest in the community of mesoscopic transport and solid-state quantum computation, and some controversial issues still remain unresolved. In this work, we revisit the continuous weak measurement of a solid-state qubit by single electron transistors (SETs) in nonlinear-response regime. For two SET models typically used in the literature, we find that the signal-to-noise ratio can violate the universal upper bound "4," which is imposed quantum mechanically on linear-response detectors. This different result can be understood by means of the cross correlation of the detector currents by viewing the two junctions of the single SET as two detectors. Possible limitation of the potential-scattering approach to this result is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parity (P)-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in noncentral collisions. To study this effect, we investigate a three-particle mixed-harmonics azimuthal correlator which is a P-even observable, but directly sensitive to the charge-separation effect. We report measurements of this observable using the STAR detector in Au + Au and Cu + Cu collisions at root s(NN) = 200 and 62 GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators and discuss in detail possible contributions from other effects that are not related to P violation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the use of probabilistic noiseless amplification in entangled coherent state-based schemes for the test of quantum nonlocality provides substantial advantages. The threshold amplitude to falsify a Bell-CHSH nonlocality test, in fact, is significantly reduced when amplification is embedded into the test itself. Such a beneficial effect holds also in the presence of detection inefficiency. Our study helps in affirming noiseless amplification as a valuable tool for coherent information processing and the generation of strongly nonclassical states of bosonic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the challenges posed by the violation of Bell-like inequalities by d-dimensional systems exposed to imperfect state-preparation and measurement settings. We address, in particular, the limit of high-dimensional systems, naturally arising when exploring the quantum-to-classical transition. We show that, although suitable Bell inequalities can be violated, in principle, for any dimension of given subsystems, it is in practice increasingly challenging to detect such violations, even if the system is prepared in a maximally entangled state. We characterize the effects of random perturbations on the state or on the measurement settings, also quantifying the efforts needed to certify the possible violations in case of complete ignorance on the system state at hand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Students referred to treatment after violating campus drug policies represent a high-risk group. Identification of factors related to these students’ cannabis use could inform prevention and treatment efforts. Distress tolerance (DT) is negatively related to substance-related behaviors and may be related to high-risk cannabis use vulnerability factors that can impact treatment outcome. Thus, the current study tested whether DT was related to cannabis use frequency, cannabis-related problems, and motivation to change cannabis use among 88 students referred for treatment after violating campus cannabis policies. DT was robustly, negatively related to cannabis use and related problems. DT was also significantly, negatively correlated with coping, conformity, and expansion motives. DT was directly and indirectly related to cannabis problems via coping (not conformity or expansion) motives. Motives did not mediate the relation of DT to cannabis use frequency. DT may be an important target in treatment with students who violate campus cannabis policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several topics on CP violation in the lepton sector are reviewed. A few theoretical aspects concerning neutrino masses, leptonic mixing, and CP violation will be covered, with special emphasis on seesaw models. A discussion is provided on observable effects which are manifest in the presence of CP violation, particularly, in neutrino oscillations and neutrinoless double beta decay processes, and their possible implications in collider experiments such as the LHC. The role that leptonic CP violation may have played in the generation of the baryon asymmetry of the Universe through the mechanism of leptogenesis is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flavour effects due to lepton interactions in the early Universe may have played an important role in the generation of the cosmological baryon asymmetry through leptogenesis. If the only source of high-energy CP violation comes from the left-handed leptonic sector, then it is possible to establish a bridge between flavoured leptogenesis and low-energy leptonic CP violation. We explore this connection taking into account our present knowledge about low-energy neutrino parameters and the matter-antimatter asymmetry observed in the Universe. In this framework, we find that leptogenesis favours a hierarchical light neutrino mass spectrum, while for quasi-degenerate and inverted hierarchical neutrino masses there is a very narrow allowed window. The absolute neutrino mass scale turns out to be m less than or similar to 0.1 eV. (c) 2007 Elsevier B.V. All rights reserved.