581 resultados para Vickers indentation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The need for development of new materials is a natural process in the companies’ technological point of view, seeking improvements in materials and processes. Specifically, among the materials, ceramic exhibit valuable properties, especially the covalent ceramics which have excellent properties for applications which requires the abrasion resistance, hardness, high temperatures, resistence, etc. being a material that has applications in several areas. Most studies are related to improvement of properties, specially fracture toughness that allows the expansion of its application. Among the most promising ceramic materials are silicon nitride (Si3N4) which has excellent properties. The goal of this work was the development and caracterization of Si3N4-based ceramics, doped with yttrium oxide (Y2O3), rar earth concentrate (CTR2O3) and cerium oxide (CeO2) in the same proportion for the evaluation of properties. The powders' mixtures were homogenized, dried and compressed under pressure uniaxial and isostatic. Sintering was carried out in 1850 ⁰C under pressure of 0,1MPa N2 for 1 h with a heating rate of 25 ⁰C / min and cooling in the furnace inertia. The characterizations were performed using Archimedes principle to relative density, weight loss by measuring before and after sintering, phase analysis by X-ray diffraction, microstructure by scanning electron microscope (SEM), hardness and fracture toughness by the method Vickers indentation. The results obtained showed relative density of 97-98%, Vickers hardness 17 to 19 GPa, fracture toughness 5.6 to 6.8 MPa.m1/2, with phases varying from α-SiAlON and β-Si3N4 depending the types of additives used. The results are promising for tribological applications and can be defined according to the types of additives to be used

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to compare the microhardness of four indirect composite resins. Forty cylindrical samples were prepared according to the manufacturer s recommendations using a Teflon mold. Ten specimens were produced from each tested material, constituting four groups (n=10) as follows: G1 - Artglass; G2 - Sinfony; G3 - Solidex; G4 - Targis. Microhardness was determined by the Vickers indentation technique with a load of 300g for 10 seconds. Four indentations were made on each sample, determining the mean microhardness values for each specimen. Descriptive statistics data for the experimental conditions were: G1 - Artglass (mean ±standard deviation: 55.26 ± 1.15HVN; median: 52.6); G2 - Sinfony (31.22 ± 0.65HVN; 31.30); G3 - Solidex (52.25 ± 1.55HVN; 52.60); G4 - Targis (72.14 ± 2.82HVN; 73.30). An exploratory data analysis was performed to determine the most appropriate statistical test through: (I) Levene's for homogeneity of variances; (II) ANOVA on ranks (Kruskal-Wallis); (III) Dunn's multiple comparison test (0.05). Targis presented the highest microhardness values while Sinfony presented the lowest. Artglass and Solidex were found as intermediate materials. These results indicate that distinct mechanical properties may be observed at specific materials. The composition of each material as well as variations on polymerization methods are possibly responsibles for the difference found in microhardness. Therefore, indirect composite resin materials that guarantee both good esthetics and adequate mechanical properties may be considered as substitutes of natural teeth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A whisker is a common name of single crystalline inorganic fibre of small dimensions, typically 0.5-1 μm in diameter and 20-50 μm in length. Whiskers are mainly used as reinforcement of ceramics. This work describes the synthesis and characterisation of new whisker types. Ti0.33Ta0.33Nb0.33CxN1-x, TiB2, B4C, and LaxCe1-xB6 have been prepared by carbothermal vapour–liquid–solid (CTR-VLS) growth mechanisms in the temperature range 900-1800°C, in argon or nitrogen. Generally, carbon and different suitable oxides were used as whisker precursors. The oxides reacted via a carbothermal reduction process. A halogenide salt was added to form gaseous metal halogenides or oxohalogenides and small amount of a transition metal was added to catalyse the whisker growth. In this mechanism, the whisker constituents are dissolved into the catalyst, in liquid phase, which becomes supersaturated. Then a whisker could nucleate and grow out under continuous feed of constituents. The syntheses of TiC, TiB2, and B4C were followed at ordinary synthesis conditions by means of mass spectrometry (MS), thermogravimetry (TG), differential thermal analysis (DTA) and quenching. The main reaction starting temperatures and reaction time for the different mixtures was revealed, and it was found that the temperature inside the crucible during the reactions was up to 100°C below the furnace set-point, due to endothermic nature of the reactions. Quench experiments showed that whiskers were formed already when reaching the temperature plateau, but the yield increased fast with the holding time and reached a maximum after about 20-30 minutes. Growth models for whisker formation have been proposed. Alumina based composites reinforced by (2-5 vol.%) TiCnano and TiNnano and 25 vol.% of carbide, and boride phases (whiskers and particulates of TiC, TiN, TaC, NbC, (Ti,Ta)C, (Ti,Ta,Nb)C, SiC, TiB2 and B4C) have been prepared by a developed aqueous colloidal processing route followed by hot pressing for 90 min at 1700°C, 28 MPa or SPS sintering for 5 minutes at 1200-1600°C and 75 MPa. Vickers indentation measurements showed that the lowest possible sintering temperature is to prefer from mechanical properties point of view. In the TiNnano composites the fracture mode was typically intergranular, while it was transgranular in the SiCnano composites. The whisker and particulate composites have been compared in terms of e.g. microstructure and mechanical properties. Generally, additions of whiskers yielded higher fracture toughness compared to particulates. Composites of commercially available SiC whiskers showed best mechanical properties with a low spread but all the other whisker phases, especially TiB2, exhibited a great potential as reinforcement materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bulk metallic glasses (BMGs) exhibit superior mechanical properties as compared with other conventional materials and have been proposed for numerous engineering and technological applications. Zr/Hf-based BMGs or tungsten reinforced BMG composites are considered as a potential replacement for depleted uranium armor-piercing projectiles because of their ability to form localized shear bands during impact, which has been known to be the dominant plastic deformation mechanism in BMGs. However, in conventional tensile, compressive and bending tests, limited ductility has been observed because of fracture initiation immediately following the shear band formation. To fully investigate shear band characteristics, indentation tests that can confine the deformation in a limited region have been pursued. In this thesis, a detailed investigation of thermal stability and mechanical deformation behavior of Zr/Hf-based BMGs is conducted. First, systematic studies had been implemented to understand the influence of relative compositions of Zr and Hf on thermal stability and mechanical property evolution. Second, shear band evolution under indentations were investigated experimentally and theoretically. Three kinds of indentation studies were conducted on BMGs in the current study. (a) Nano-indentation to determine the mechanical properties as a function of Hf/Zr content. (b) Static Vickers indentation on bonded split specimens to investigate the shear band evolution characteristics beneath the indention. (c) Dynamic Vickers indentation on bonded split specimens to investigate the influence of strain rate. It was found in the present work that gradually replacing Zr by Hf remarkably increases the density and improves the mechanical properties. However, a slight decrease in glass forming ability with increasing Hf content has also been identified through thermodynamic analysis although all the materials in the current study were still found to be amorphous. Many indentation studies have revealed only a few shear bands surrounding the indent on the top surface of the specimen. This small number of shear bands cannot account for the large plastic deformation beneath the indentations. Therefore, a bonded interface technique has been used to observe the slip-steps due to shear band evolution. Vickers indentations were performed along the interface of the bonded split specimen at increasing loads. At small indentation loads, the plastic deformation was primarily accommodated by semi-circular primary shear bands surrounding the indentation. At higher loads, secondary and tertiary shear bands were formed inside this plastic zone. A modified expanding cavity model was then used to predict the plastic zone size characterized by the shear bands and to identify the stress components responsible for the evolution of the various types of shear bands. The applicability of various hardness—yield-strength ( H −σγ ) relationships currently available in the literature for bulk metallic glasses (BMGs) is also investigated. Experimental data generated on ZrHf-based BMGs in the current study and those available elsewhere on other BMG compositions were used to validate the models. A modified expanding-cavity model, employed in earlier work, was extended to propose a new H −σγ relationship. Unlike previous models, the proposed model takes into account not only the indenter geometry and the material properties, but also the pressure sensitivity index of the BMGs. The influence of various model parameters is systematically analyzed. It is shown that there is a good correlation between the model predictions and the experimental data for a wide range of BMG compositions. Under dynamic Vickers indentation, a decrease in indentation hardness at high loading rate was observed compared to static indentation hardness. It was observed that at equivalent loads, dynamic indentations produced more severe deformation features on the loading surface than static indentations. Different from static indentation, two sets of widely spaced semi-circular shear bands with two different curvatures were observed. The observed shear band pattern and the strain rate softening in indentation hardness were rationalized based on the variations in the normal stress on the slip plane, the strain rate of shear and the temperature rise associated with the indentation deformation. Finally, a coupled thermo-mechanical model is proposed that utilizes a momentum diffusion mechanism for the growth and evolution of the final spacing of shear bands. The influence of strain rate, confinement pressure and critical shear displacement on the shear band spacing, temperature rise within the shear band, and the associated variation in flow stress have been captured and analyzed. Consistent with the known pressure sensitive behavior of BMGs, the current model clearly captures the influence of the normal stress in the formation of shear bands. The normal stress not only reduces the time to reach critical shear displacement but also causes a significant temperature rise during the shear band formation. Based on this observation, the variation of shear band spacing in a typical dynamic indentation test has been rationalized. The temperature rise within a shear band can be in excess of 2000K at high strain rate and high confinement pressure conditions. The associated drop in viscosity and flow stress may explain the observed decrease in fracture strength and indentation hardness. The above investigations provide valuable insight into the deformation behavior of BMGs under static and dynamic loading conditions. The shear band patterns observed in the above indentation studies can be helpful to understand and model the deformation features under complex loading scenarios such as the interaction of a penetrator with armor. Future work encompasses (1) extending and modifying the coupled thermo-mechanical model to account for the temperature rise in quasistatic deformation; and (2) expanding this model to account for the microstructural variation-crystallization and free volume migration associated with the deformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Directionally solidified Al2O3–Er3Al5O12–ZrO2 eutectic rods were processed using the laser floating zone method at growth rates of 25, 350and 750 mm/h to obtain microstructures with different domain size. The mechanical properties were investigated as a function of the processing rate. The hardness, 15.6 GPa, and the fracture toughness, 4 MPa m1/2, obtained from Vickers indentation at room temperature were practically independent of the size of the eutectic phases. However, the flexural strength increased as the domain size decreased, reaching outstanding strength values close to 3 GPa in the samples grown at 750 mm/h. A high retention of the flexural strength was observed up to 1500 K in the materials processed at 25 and 350 mm/h, while superplastic behaviour was observed at 1700 K in the eutectic rods solidified at the highest rate of 750 mm/h

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Knoop and Vickers indentation cracks have frequently been used as model 'precracks' in ceramic bend specimens for fracture toughness (K1c) determination. Indentation residual stress reduces the measured K1c but can be removed or accounted for by grinding, annealing, or modelling. Values of K1c are obtained for four materials using Vickers indentations and an improved stress intensity factor. Methods for residual stress removal or incorporation are compared, and the most reliable stress removal alternative is identified for each material. © 1996 The Institute of Materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the effects of conical indentation variables on the load-depth indentation curves were analyzed using finite element modeling and dimensional analysis. A factorial design 2(6) was used with the aim of quantifying the effects of the mechanical properties of the indented material and of the indenter geometry. Analysis was based on the input variables Y/E, R/h(max), n, theta, E, and h(max). The dimensional variables E and h(max) were used such that each value of dimensionless Y/E was obtained with two different values of E and each value of dimensionless R/h(max) was obtained with two different h(max) values. A set of dimensionless functions was defined to analyze the effect of the input variables: Pi(1) = P(1)/Eh(2), Pi(2) = h(c)/h, Pi(3) = H/Y, Pi(4) = S/Eh(max), Pi(6) = h(max)/h(f) and Pi(7) = W(P)/W(T). These six functions were found to depend only on the dimensionless variables studied (Y/E, R/h(max), n, theta). Another dimension less function, Pi(5) = beta, was not well defined for most of the dimensionless variables and the only variable that provided a significant effect on beta was theta. However, beta showed a strong dependence on the fraction of the data selected to fit the unloading curve, which means that beta is especially Susceptible to the error in the Calculation of the initial unloading slope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indentation tests are used to determine the hardness of a material, e.g., Rockwell, Vickers, or Knoop. The indentation process is empirically observed in the laboratory during these tests; the mechanics of indentation is insufficiently understood. We have performed first molecular dynamics computer simulations of indentation resistance of polymers with a chain structure similar to that of high density polyethylene (HDPE). A coarse grain model of HDPE is used to simulate how the interconnected segments respond to an external force imposed by an indenter. Results include the time-dependent measurement of penetration depth, recovery depth, and recovery percentage, with respect to indenter force, indenter size, and indentation time parameters. The simulations provide results that are inaccessible experimentally, including continuous evolution of the pertinent tribological parameters during the entire indentation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O ensaio de dureza, e mais concretamente o ensaio de micro dureza Vickers, é no universo dos ensaios mecânicos um dos mais utilizados quer seja na indústria, no ensino ou na investigação e desenvolvimento de produto no âmbito das ciências dos materiais. Na grande maioria dos casos, a utilização deste ensaio tem como principal aplicação a caracterização ou controlo da qualidade de fabrico de materiais metálicos. Sendo um ensaio de relativa simplicidade de execução, rapidez e com resultados comparáveis e relacionáveis a outras grandezas físicas das propriedades dos materiais. Contudo, e tratando-se de um método de ensaio cuja intervenção humana é importante, na medição da indentação gerada por penetração mecânica através de um sistema ótico, não deixa de exibir algumas debilidades que daí advêm, como sendo o treino dos técnicos e respetivas acuidades visuais, fenómenos de fadiga visual que afetam os resultados ao longo de um turno de trabalho; ora estes fenómenos afetam a repetibilidade e reprodutibilidade dos resultados obtidos no ensaio. O CINFU possui um micro durómetro Vickers, cuja realização dos ensaios depende de um técnico treinado para a execução do mesmo, apresentando todas as debilidades já mencionadas e que o tornou elegível para o estudo e aplicação de uma solução alternativa. Assim, esta dissertação apresenta o desenvolvimento de uma solução alternativa ao método ótico convencional na medição de micro dureza Vickers. Utilizando programação em LabVIEW da National Instruments, juntamente com as ferramentas de visão computacional (NI Vision), o programa começa por solicitar ao técnico a seleção da câmara para aquisição da imagem digital acoplada ao micro durómetro, seleção do método de ensaio (Força de ensaio); posteriormente o programa efetua o tratamento da imagem (aplicação de filtros para eliminação do ruído de fundo da imagem original), segue-se, por indicação do operador, a zona de interesse (ROI) e por sua vez são identificadas automaticamente os vértices da calote e respetivas distâncias das diagonais geradas concluindo, após aceitação das mesmas, com o respetivo cálculo de micro dureza resultante. Para validação dos resultados foram utilizados blocos-padrão de dureza certificada (CRM), cujos resultados foram satisfatórios, tendo-se obtido um elevado nível de exatidão nas medições efetuadas. Por fim, desenvolveu-se uma folha de cálculo em Excel com a determinação da incerteza associada às medições de micro dureza Vickers. Foram então comparados os resultados nas duas metodologias possíveis, pelo método ótico convencional e pela utilização das ferramentas de visão computacional, tendo-se obtido bons resultados com a solução proposta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate biaxial-flexural-strength (σf), Vickers hardness (HV), fracture toughness (K Ic), Young's modulus (E), Poisson's ratio (ν) and porosity (P) of two commercial glass-ceramics, Empress (E1) and Empress 2 (E2), as a function of the hot-pressing temperature. Ten disks were hot-pressed at 1065, 1070, 1075 and 1080 °C for E1; and at 910, 915, 920 and 925 °C for E2. The porosity was measured by an image analyzer software and s f was determined using the piston-on-three-balls method. K Ic and HV were determined by an indentation method. Elastic constants were determined by the pulse-echo method. For E1 samples treated at different temperatures, there were no statistical differences among the values of all evaluated properties. For E2 samples treated at different temperatures, there were no statistical differences among the values of σf, E, and ν, however HV and K Ic were significantly higher for 910 and 915 °C, respectively. Regarding P, the mean value obtained for E2 for 925 °C was significantly higher compared to other temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the effects of indenter tip roundness oil the load-depth indentation curves were analyzed using finite element modeling. The tip roundness level was Studied based on the ratio between tip radius and maximum penetration depth (R/h(max)), which varied from 0.02 to 1. The proportional Curvature constant (C), the exponent of depth during loading (alpha), the initial unloading slope (S), the correction factor (beta), the level of piling-up or sinking-in (h(c)/h(max)), and the ratio h(max)/h(f) are shown to be strongly influenced by the ratio R/h(max). The hardness (H) was found to be independent of R/h(max) in the range studied. The Oliver and Pharr method was successful in following the variation of h(c)/h(max) with the ratio R/h(max) through the variation of S with the ratio R/h(max). However, this work confirmed the differences between the hardness values calculated using the Oliver-Pharr method and those obtained directly from finite element calculations; differences which derive from the error in area calculation that Occurs when given combinations of indented material properties are present. The ratio of plastic work to total work (W(p)/W(t)) was found to be independent of the ratio R/h(max), which demonstrates that the methods for the Calculation of mechanical properties based on the *indentation energy are potentially not Susceptible to errors caused by tip roundness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, the acoustic and nanoindentation techniques are two of the most used techniques for material elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nanoindentation technique are also reviewed. An experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nanoindentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work uses crystal plasticity finite element simulations to elucidate the role of elastoplastic anisotropy in instrumented indentation P-h(s) curve measurements in face-centered Cubic (fcc) crystals. It is shown that although the experimental fluctuations in the loading stage of the P-h(s) curves can be attributed to anisotropy, the variability in the unloading stage of the experiments Is much greater than that resulting from anisotropy alone. Moreover, it is found that the conventional procedure used to evaluate the contact variables ruling the unloading P-h(s) curve introduces all uncertainty that approximates to the more fundamental influence of anisotropy. In view of these results, a robust procedure is proposed that uses contact area measurements in addition to the P-h(s) curves to extract homogenized J(2)-Plasticity-equivalent mechanical properties from single crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Raman scattering study on multiple phase generation in silicon submitted to successive Vickers microindentation cycles, in different crystallographic orientations, was performed. The microindentations were perfon-ned in a virgin single crystal (100)-oriented surface, in the [001] and [011] directions. The results indicated that the formation of multiple phases by cyclic microindentation may depend on the crystallographic direction and number of successive cycles: the onset of several different structural phases was detected after the third cycle for the [001] direction and only after 15 cycles for the [011] direction, indicating that there is a crystallographic orientation dependence for multiple phase generation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the Hertz theory is not applicable in the analysis of the indentation of elastic-plastic materials, it is common practice to incorporate the concept of indenter/specimen combined modulus to consider indenter deformation. The appropriateness was assessed of the use of reduced modulus to incorporate the effect of indenter deformation in the analysis of the indentation with spherical indenters. The analysis based on finite element simulations considered four values of the ratio of the indented material elastic modulus to that of the diamond indenter, E/E(i) (0, 0.04, 0.19, 0.39), four values of the ratio of the elastic reduced modulus to the initial yield strength, E(r)/Y (0, 10, 20, 100), and two values of the ratio of the indenter radius to maximum total displacement, R/delta(max) (3, 10). Indenter deformation effects are better accounted for by the reduced modulus if the indented material behaves entirely elastically. In this case, identical load-displacement (P - delta) curves are obtained with rigid and elastic spherical indenters for the same elastic reduced modulus. Changes in the ratio E/E(i), from 0 to 0.39, resulted in variations lower than 5% for the load dimensionless functions, lower than 3% in the contact area, A(c), and lower than 5% in the ratio H/E(r). However, deformations of the elastic indenter made the actual radius of contact change, even in the indentation of elastic materials. Even though the load dimensionless functions showed only a little increase with the ratio E/E(i), the hardening coefficient and the yield strength could be slightly overestimated when algorithms based on rigid indenters are used. For the unloading curves, the ratio delta(e)/delta(max), where delta(e) is the point corresponding to zero load of a straight line with slope S from the point (P(max), delta(max)), varied less than 5% with the ratio E/E(i). Similarly, the relationship between reduced modulus and the unloading indentation curve, expressed by Sneddon`s equation, did not reveal the necessity of correction with the ratio E/E(i). The most affected parameter in the indentation curve, as a consequence of the indentation deformation, was the ratio between the residual indentation depth after complete unloading and the maximum indenter displacement, delta(r)/delta(max) (up to 26%), but this variation did not significantly decrease the capability to estimate hardness and elastic modulus based on the ratio of the residual indentation depth to maximum indentation depth, h(r)/h(max). In general, the results confirm the convenience of the use of the reduced modulus in the spherical instrumented indentation tests.