949 resultados para Vibration signal analysis
Resumo:
"Report no. CG-D-4-80."
Resumo:
"July 1974."
Resumo:
Dizziness and or unsteadiness, associated with episodes of loss of balance, are frequent complaints in those suffering from persistent problems following a whiplash injury. Research has been inconclusive with respect to possible aetiology, discriminative tests and analyses used. The aim of this pilot research was to identify the test conditions and the most appropriate method for the analysis of sway that may differentiate subjects with persistent whiplash associated disorders (WAD) from healthy controls. The six conditions of the Clinical Test for Sensory Interaction in Balance was performed in both comfortable and tandem stance in 20 subjects with persistent WAD compared to 20 control subjects. The analyses were carried out using a traditional method of measurement, total sway distance, to results obtained from the use of wavelet analysis. Subjects with WAD were significantly less able to complete the tandem stance tests on a firm surface than controls. In comfortable stance, using wavelet analysis, significant differences between subjects with WAD and the control group were evident in total energy of the trace for all test conditions apart from eyes open on the firm surface. In contrast, the results of the analysis using total sway distance revealed no significant differences between groups across all six conditions. Wavelet analysis may be more appropriate for detecting disturbances in balance in whiplash subjects because the technique allows separation of the noise from the underlying systematic effect of sway. These findings will be used to direct future studies on the aeitiology of balance disturbances in WAD. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Grid computing is an advanced technique for collaboratively solving complicated scientific problems using geographically and organisational dispersed computational, data storage and other recourses. Application of grid computing could provide significant benefits to all aspects of power system that involves using computers. Based on our previous research, this paper presents a novel grid computing approach for probabilistic small signal stability (PSSS) analysis in electric power systems with uncertainties. A prototype computing grid is successfully implemented in our research lab to carry out PSSS analysis on two benchmark systems. Comparing to traditional computing techniques, the gird computing has given better performances for PSSS analysis in terms of computing capacity, speed, accuracy and stability. In addition, a computing grid framework for power system analysis has been proposed based on the recent study.
Resumo:
Cardiotocography provides significant information on foetal oxygenation linked to characteristics of foetal heart rate signals. Among most important we can mention foetal heart rate variability, whose spectral analysis is recognised like useful in improving diagnosis of pathologic conditions. However, despite its importance, a standardisation of definition and estimation of foetal heart rate variability is still searched. Some guidelines state that variability refers to fluctuations in the baseline free from accelerations and decelerations. This is an important limit in clinical routine since variability in correspondence of these FHR alterations has always been regarded as particularly significant in terms of prognostic value. In this work we compute foetal heart rate variability as difference between foetal heart rate and floatingline and we propose a method for extraction of floatingline which takes into account accelerations and decelerations. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
The aim of this work is to contribute to the analysis and characterization of training with whole body vibration (WBV) and the resultant neuromuscular response. WBV aims to mechanically activate muscle by eliciting stretch reflexes. Generally, surface electromyography is utilized to assess muscular response elicited by vibrations. However, EMG analysis could potentially bring to erroneous conclusions if not accurately filtered. Tiny and lightweight MEMS accelerometers were found helpful in monitoring muscle motion. Displacements were estimated integrating twice the acceleration data after gravity and small postural subject adjustments contribution removal. Results showed the relevant presence of motion artifacts on EMG recordings, the high correlation between muscle motion and EMG activity and how resonance frequencies and dumping factors depended on subject and his positioning onto the vibrating platform. Stimulations at the resonant frequency maximize muscles lengthening and in turn, muscle spindle solicitation , which may produce more muscle activation. Local mechanical stimulus characterization (Le, muscle motion analysis) could be meaningful in discovering proper muscle stimulation and may contribute to suggest appropriate and effective WBV exercise protocols. ©2009 IEEE.
Resumo:
Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in structures in order to improve reliability and reduce life-cycle costs. The greatest challenge for designing a SHM system is knowing what changes to look for and how to classify them. Different approaches for SHM have been proposed for damage identification, each one with advantages and drawbacks. This paper presents a methodology for improvement in vibration signal analysis using statistics information involving the probability density. Generally, the presence of noises in input and output signals results in false alarms, then, it is important that the methodology can minimize this problem. In this paper, the proposed approach is experimentally tested in a flexible plate using a piezoelectric (PZT) actuator to provide the disturbance.
Resumo:
Purpose - The purpose of this paper is to provide information on lubricant contamination by biodiesel using vibration and neural network.Design/methodology/approach - The possible contamination of lubricants is verified by analyzing the vibration and neural network of a bench test under determinated conditions.Findings - Results have shown that classical signal analysis methods could not reveal any correlation between the signal and the presence of contamination, or contamination grade. on other hand, the use of probabilistic neural network (PNN) was very successful in the identification and classification of contamination and its grade.Research limitations/implications - This study was done for some specific kinds of biodiesel. Other types of biodiesel could be analyzed.Practical implications Contamination information is presented in the vibration signal, even if it is not evident by classical vibration analysis. In addition, the use of PNN gives a relatively simple and easy-to-use detection tool with good confidence. The training process is fast, and allows implementation of an adaptive training algorithm.Originality/value - This research could be extended to an internal combustion engine in order to verify a possible contamination by biodiesel.
Resumo:
We describe one of the research lines of the Grup de Teoria de Funcions de la UAB UB, which deals with sampling and interpolation problems in signal analysis and their connections with complex function theory.
Resumo:
The traditional methods employed to detect atherosclerotic lesions allow for the identification of lesions; however, they do not provide specific characterization of the lesion`s biochemistry. Currently, Raman spectroscopy techniques are widely used as a characterization method for unknown substances, which makes this technique very important for detecting atherosclerotic lesions. The spectral interpretation is based on the analysis of frequency peaks present in the signal; however, spectra obtained from the same substance can show peaks slightly different and these differences make difficult the creation of an automatic method for spectral signal analysis. This paper presents a signal analysis method based on a clustering technique that allows for the classification of spectra as well as the inference of a diagnosis about the arterial wall condition. The objective is to develop a computational tool that is able to create clusters of spectra according to the arterial wall state and, after data collection, to allow for the classification of a specific spectrum into its correct cluster.
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação ente o ISEL e o LNEC
Resumo:
The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indexes during the period 2000–2009. We analyze, under a regional criterium, ten main indexes at a daily time horizon. The methods and algorithms that have been explored for the description of dynamical phenomena become an effective background in the analysis of economical data. We start by applying the classical concepts of signal analysis, fractional Fourier transform, and methods of fractional calculus. In a second phase we adopt the multidimensional scaling approach. Stock market indexes are examples of complex interacting systems for which a huge amount of data exists. Therefore, these indexes, viewed from a different perspectives, lead to new classification patterns.
Resumo:
Benefits of long-term monitoring have drawn considerable attention in healthcare. Since the acquired data provides an important source of information to clinicians and researchers, the choice for long-term monitoring studies has become frequent. However, long-term monitoring can result in massive datasets, which makes the analysis of the acquired biosignals a challenge. In this case, visualization, which is a key point in signal analysis, presents several limitations and the annotations handling in which some machine learning algorithms depend on, turn out to be a complex task. In order to overcome these problems a novel web-based application for biosignals visualization and annotation in a fast and user friendly way was developed. This was possible through the study and implementation of a visualization model. The main process of this model, the visualization process, comprised the constitution of the domain problem, the abstraction design, the development of a multilevel visualization and the study and choice of the visualization techniques that better communicate the information carried by the data. In a second process, the visual encoding variables were the study target. Finally, the improved interaction exploration techniques were implemented where the annotation handling stands out. Three case studies are presented and discussed and a usability study supports the reliability of the implemented work.
Resumo:
based on the report for the Doctoral Conference of the PhD programme in Technology Assessment, held at FCT-UNL Campus, Monte de Caparica, July 2013. The PhD thesis has the supervision of Dr. Salomé Almeida (Central Hospital of Lisbon), and co-supervision of Prof. Manuel Ortigueira (FCT-UNL).