994 resultados para Vertical displacement measurement
Resumo:
Primary stability of stems in cementless total hip replacements is recognized to play a critical role for long-term survival and thus for the success of the overall surgical procedure. In Literature, several studies addressed this important issue. Different approaches have been explored aiming to evaluate the extent of stability achieved during surgery. Some of these are in-vitro protocols while other tools are coinceived for the post-operative assessment of prosthesis migration relative to the host bone. In vitro protocols reported in the literature are not exportable to the operating room. Anyway most of them show a good overall accuracy. The RSA, EBRA and the radiographic analysis are currently used to check the healing process of the implanted femur at different follow-ups, evaluating implant migration, occurance of bone resorption or osteolysis at the interface. These methods are important for follow up and clinical study but do not assist the surgeon during implantation. At the time I started my Ph.D Study in Bioengineering, only one study had been undertaken to measure stability intra-operatively. No follow-up was presented to describe further results obtained with that device. In this scenario, it was believed that an instrument that could measure intra-operatively the stability achieved by an implanted stem would consistently improve the rate of success. This instrument should be accurate and should give to the surgeon during implantation a quick answer concerning the stability of the implanted stem. With this aim, an intra-operative device was designed, developed and validated. The device is meant to help the surgeon to decide how much to press-fit the implant. It is essentially made of a torsional load cell, able to measure the extent of torque applied by the surgeon to test primary stability, an angular sensor that measure the relative angular displacement between stem and femur, a rigid connector that enable connecting the device to the stem, and all the electronics for signals conditioning. The device was successfully validated in-vitro, showing a good overall accuracy in discriminating stable from unstable implants. Repeatability tests showed that the device was reliable. A calibration procedure was then performed in order to convert the angular readout into a linear displacement measurement, which is an information clinically relevant and simple to read in real-time by the surgeon. The second study reported in my thesis, concerns the evaluation of the possibility to have predictive information regarding the primary stability of a cementless stem, by measuring the micromotion of the last rasp used by the surgeon to prepare the femoral canal. This information would be really useful to the surgeon, who could check prior to the implantation process if the planned stem size can achieve a sufficient degree of primary stability, under optimal press fitting conditions. An intra-operative tool was developed to this aim. It was derived from a previously validated device, which was adapted for the specific purpose. The device is able to measure the relative micromotion between the femur and the rasp, when a torsional load is applied. An in-vitro protocol was developed and validated on both composite and cadaveric specimens. High correlation was observed between one of the parameters extracted form the acquisitions made on the rasp and the stability of the corresponding stem, when optimally press-fitted by the surgeon. After tuning in-vitro the protocol as in a closed loop, verification was made on two hip patients, confirming the results obtained in-vitro and highlighting the independence of the rasp indicator from the bone quality, anatomy and preserving conditions of the tested specimens, and from the sharpening of the rasp blades. The third study is related to an approach that have been recently explored in the orthopaedic community, but that was already in use in other scientific fields. It is based on the vibration analysis technique. This method has been successfully used to investigate the mechanical properties of the bone and its application to evaluate the extent of fixation of dental implants has been explored, even if its validity in this field is still under discussion. Several studies have been published recently on the stability assessment of hip implants by vibration analysis. The aim of the reported study was to develop and validate a prototype device based on the vibration analysis technique to measure intra-operatively the extent of implant stability. The expected advantages of a vibration-based device are easier clinical use, smaller dimensions and minor overall cost with respect to other devices based on direct micromotion measurement. The prototype developed consists of a piezoelectric exciter connected to the stem and an accelerometer attached to the femur. Preliminary tests were performed on four composite femurs implanted with a conventional stem. The results showed that the input signal was repeatable and the output could be recorded accurately. The fourth study concerns the application of the device based on the vibration analysis technique to several cases, considering both composite and cadaveric specimens. Different degrees of bone quality were tested, as well as different femur anatomies and several levels of press-fitting were considered. The aim of the study was to verify if it is possible to discriminate between stable and quasi-stable implants, because this is the most challenging detection for the surgeon in the operation room. Moreover, it was possible to validate the measurement protocol by comparing the results of the acquisitions made with the vibration-based tool to two reference measurements made by means of a validated technique, and a validated device. The results highlighted that the most sensitive parameter to stability is the shift in resonance frequency of the stem-bone system, showing high correlation with residual micromotion on all the tested specimens. Thus, it seems possible to discriminate between many levels of stability, from the grossly loosened implant, through the quasi-stable implants, to the definitely stable one. Finally, an additional study was performed on a different type of hip prosthesis, which has recently gained great interest thus becoming fairly popular in some countries in the last few years: the hip resurfacing prosthesis. The study was motivated by the following rationale: although bone-prosthesis micromotion is known to influence the stability of total hip replacement, its effect on the outcome of resurfacing implants has not been investigated in-vitro yet, but only clinically. Thus the work was aimed at verifying if it was possible to apply to the resurfacing prosthesis one of the intraoperative devices just validated for the measurement of the micromotion in the resurfacing implants. To do that, a preliminary study was performed in order to evaluate the extent of migration and the typical elastic movement for an epiphyseal prosthesis. An in-vitro procedure was developed to measure micromotions of resurfacing implants. This included a set of in-vitro loading scenarios that covers the range of directions covered by hip resultant forces in the most typical motor-tasks. The applicability of the protocol was assessed on two different commercial designs and on different head sizes. The repeatability and reproducibility were excellent (comparable to the best previously published protocols for standard cemented hip stems). Results showed that the procedure is accurate enough to detect micromotions of the order of few microns. The protocol proposed was thus completely validated. The results of the study demonstrated that the application of an intra-operative device to the resurfacing implants is not necessary, as the typical micromovement associated to this type of prosthesis could be considered negligible and thus not critical for the stabilization process. Concluding, four intra-operative tools have been developed and fully validated during these three years of research activity. The use in the clinical setting was tested for one of the devices, which could be used right now by the surgeon to evaluate the degree of stability achieved through the press-fitting procedure. The tool adapted to be used on the rasp was a good predictor of the stability of the stem. Thus it could be useful for the surgeon while checking if the pre-operative planning was correct. The device based on the vibration technique showed great accuracy, small dimensions, and thus has a great potential to become an instrument appreciated by the surgeon. It still need a clinical evaluation, and must be industrialized as well. The in-vitro tool worked very well, and can be applied for assessing resurfacing implants pre-clinically.
Resumo:
The integration of remote monitoring techniques at different scales is of crucial importance for monitoring of volcanoes and assessment of the associated hazard. In this optic, technological advancement and collaboration between research groups also play a key role. Vhub is a community cyberinfrastructure platform designed for collaboration in volcanology research. Within the Vhub framework, this dissertation focuses on two research themes, both representing novel applications of remotely sensed data in volcanology: advancement in the acquisition of topographic data via active techniques and application of passive multi-spectral satellite data to monitoring of vegetated volcanoes. Measuring surface deformation is a critical issue in analogue modelling of Earth science phenomena. I present a novel application of the Microsoft Kinect sensor to measurement of vertical and horizontal displacements in analogue models. Specifically, I quantified vertical displacement in a scaled analogue model of Nisyros volcano, Greece, simulating magmatic deflation and inflation and related surface deformation, and included the horizontal component to reconstruct 3D models of pit crater formation. The detection of active faults around volcanoes is of importance for seismic and volcanic hazard assessment, but not a simple task to be achieved using analogue models. I present new evidence of neotectonic deformation along a north-south trending fault from the Mt Shasta debris avalanche deposit (DAD), northern California. The fault was identified on an airborne LiDAR campaign of part of the region interested by the DAD and then confirmed in the field. High resolution LiDAR can be utilized also for geomorphological assessment of DADs, and I describe a size-distance analysis to document geomorphological aspects of hummock in the Shasta DAD. Relating the remote observations of volcanic passive degassing to conditions and impacts on the ground provides an increased understanding of volcanic degassing and how satellite-based monitoring can be used to inform hazard management strategies in nearreal time. Combining a variety of satellite-based spectral time series I aim to perform the first space-based assessment of the impacts of sulfur dioxide emissions from Turrialba volcano, Costa Rica, on vegetation in the surrounding environment, and establish whether vegetation indices could be used more broadly to detect volcanic unrest.
Resumo:
In this paper, we report the first demonstration of multiplexed fibre Bragg grating strain sensors in a multicore fibre for shape measurement and their application to structural monitoring. Sets of gratings, acting as strain gauges, are co-located in the multicore fibre such that they enable the curvature to be determined via differential strain measurement. Multiple sets of these gratings allow the curvature to be measured at several points along the fibre. In this paper, the multicore fibre is configured to measure the deflection of a simple mechanical beam arising from the displacement of concrete tunnel sections. Laboratory tests are presented in which the system was demonstrated capable of displacement measurement with a resolution of ±0.1 mm over a range of several millimetres. © 2006 IOP Publishing Ltd.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
In the unlubricated sliding wear of steels the mild-severe and severe-mild wear transitions have long been investigated. The effect of system inputs such as normal load, sliding speed, environment humidity and temperature, material properties, among others, on those transitions have also been studied. Although transitions seem to be caused by microstructural changes, surfaces oxidation and work-hardening, some questions remain regarding the way each aspect is involved. Since the early studies in sliding wear, it has usually been assumed that only the material properties of the softer body influence the wear behavior of contacting surfaces. For example, the Archard equation involves only the hardness of the softer body, without considering the hardness of the harder body. This work aims to discuss the importance of the harder body hardness in determining the wear regime operation. For this, pin-on-disk wear tests were carried out, in which the disk material was always harder than the pin material. Variations of the friction force and vertical displacement of the pin were registered during the tests. A material characterization before and after tests was conducted using stereoscopy and scanning electron microscopy (SEM) methods, in addition to mass loss, surface roughness and microhardness measurements. The wear results confirmed the occurrence of a mild-severe wear transition when the disk hardness was decreased. The disk hardness to pin hardness ratio (H(d)/H(p)) was used as a criterion to establish the nature of surface contact deformation and to determine the wear regime transition. A predominantly elastic or plastic contact, characterized by H(d)/H(p) values higher or lower than one, results in a mild or severe wear regime operation, respectively. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Este trabalho insere-se no domínio da calibração energética dos equipamentos SPT, dando seguimento ao disposto na norma EN ISO 22476-3, de aplicação obrigatória em Portugal. Para tal foi utilizada uma vara instrumentada, cuja instrumentação consiste em strain-gauges e acelerómetros piezoeléctricos. Esta instrumentação encontra-se fixa a um trecho de vara com comprimento de 60 cm e para a aquisição dos dados foi utilizado o sistema SPT Analyzer® comercializado pela firma PDI. O sistema permite registar os dados provenientes da instrumentação: sinais de um par de strain-gauges, transformados em registos de força (F1 e F2) e sinais de um par de acelerómetros, convertidos em registos de velocidade (V1 e V2) ao longo do tempo. O equipamento permite a avaliação, em tempo real, da qualidade dos registos e da energia máxima transmitida à vara em cada golpe e o conhecimento do deslocamento vertical do trem de varas ocorrido em cada golpe do martelo. Por outro lado, baseando-se no tema acima referido, pretende-se ainda desenvolver esforços no sentido de melhorar o novo método interpretativo dos resultados dos ensaios SPT e sua aplicação ao dimensionamento de estacas, dado que a previsão da capacidade de carga de estacas constitui um dos desafios da engenharia de fundações por requerer a estimativa de propriedades do solo, alterações pela execução da fundação e conhecimento do mecanismo de interacção solo-estaca. Este novo procedimento baseia-se nos princípios da dinâmica, rompendo com as metodologias até aqui consagradas, de natureza essencialmente empírica. A nova forma de interpretar os ensaios SPT, consubstanciada nos princípios de conservação de energia na cravação do amostrador SPT, irá permitir converter analiticamente o valor Nspt numa força dinâmica de reacção à penetração. A decomposição desta força dinâmica permite efectuar análises comparativas entre as resistências unitárias mobilizadas no amostrador SPT (modelo) e as mobilizadas na estaca (protótipo).
Resumo:
In this paper analytical transient solutions of dynamic response of one-dimensional systems with sudden change of foundation stiffness are derived. In more details, cantilever dynamic response, expressed in terms of vertical displacement, is extended to account for elastic foundation and then two cantilever solutions, corresponding to beams clamped on left and right hand side, with different value of Winkler constant are connected together by continuity conditions. The internal forces, as the unknowns, can be introduced by the same values in both clamped beam solutions and solved. Assumption about time variation of internal forces at the section of discontinuity must be adopted and originally analytical solution will have to include numerical procedure.
Resumo:
In the Longroiva-Vilariça area, the identification of Cenozoic lithostratigraphic units, the sedimentology and the characterization of its geometric relations with tectonic structures allowed the interpretation of the palaeogeographic main stages: 1) the greenwhitish Vilariça Arkoses (Middle Eocene to Oligocene ?) represent proximal sediments of a very low gradient drainage towards the eastern Spanish Tertiary Duero Basin; 2)Quintãs Formation (late Miocene ?) are brown-reddish coloured piedmont alluvial deposits, correlative of important vertical displacement (western tectonic block relative uplift) along the NNE-SSW indent-linked strike-slip Bragança-Vilariça-Longroiva fault zone, interpreted as a reactivated deep hercynian fracture, with left-lateral movement; 3) the red Sampaio Formation (Gelasian-early Pleistocene ?)was interpreted as downhill conglomeratic deposits related with important overtrusting along this fault zone (the definition of the present-day narrow graben configuration) and correlative of the atlantic hydrographic incision stage beginning; 4) conglomeratic terraces (middle and late Pleistocene ?); 5) alluvial plains and colluvial deposits (Holocene).
Resumo:
Research into the biomechanical manifestation of fatigue during exhaustive runs is increasingly popular but additional understanding of the adaptation of the spring-mass behaviour during the course of strenuous, self-paced exercises continues to be a challenge in order to develop optimized training and injury prevention programs. This study investigated continuous changes in running mechanics and spring-mass behaviour during a 5-km run. 12 competitive triathletes performed a 5-km running time trial (mean performance: 17 min 30 s) on a 200 m indoor track. Vertical and anterior-posterior ground reaction forces were measured every 200 m by a 5-m long force platform system, and used to determine spring-mass model characteristics. After a fast start, running velocity progressively decreased (- 11.6%; P<0.001) in the middle part of the race before an end spurt in the final 400-600 m. Stride length (- 7.4%; P<0.001) and frequency (- 4.1%; P=0.001) decreased over the 25 laps, while contact time (+ 8.9%; P<0.001) and total stride duration (+ 4.1%; P<0.001) progressively lengthened. Peak vertical forces (- 2.0%; P<0.01) and leg compression (- 4.3%; P<0.05), but not centre of mass vertical displacement (+ 3.2%; P>0.05), decreased with time. As a result, vertical stiffness decreased (- 6.0%; P<0.001) during the run, whereas leg stiffness changes were not significant (+ 1.3%; P>0.05). Spring-mass behaviour progressively changes during a 5-km time trial towards deteriorated vertical stiffness, which alters impact and force production characteristics.
Resumo:
It is frequently stated that unilateral cricothyroid muscle (CT) paralysis can be diagnosed by physical examination, noting rotation of the glottis, and shortening and vertical displacement of the ipsilateral vocal fold. These signs, however, are inconsistently observed, and there is considerable controversy regarding the direction of glottic rotation. To determine the effects of CT contraction on three-dimensional glottic configuration, we performed computerized tomography on cadaver larynges before and after simulated CT contraction. Radiopaque makers were used to compute distances. Unilateral CT contraction equally increased the length of both membranous vocal folds, and rotated the posterior glottis less than 1 mm. CT contraction neither adducted the vocal processes, nor significantly their altered vertical level. These results suggest that unilateral CT paralysis cannot be diagnosed on the basis of any clinically apparent change in glottal configuration.
Resumo:
This study investigated fatigue-induced changes in spring-mass model characteristics during repeated running sprints. Sixteen active subjects performed 12 × 40 m sprints interspersed with 30 s of passive recovery. Vertical and anterior-posterior ground reaction forces were measured at 5-10 m and 30-35 m and used to determine spring-mass model characteristics. Contact (P < 0.001), flight (P < 0.05) and swing times (P < 0.001) together with braking, push-off and total stride durations (P < 0.001) lengthened across repetitions. Stride frequency (P < 0.001) and push-off forces (P < 0.05) decreased with fatigue, whereas stride length (P = 0.06), braking (P = 0.08) and peak vertical forces (P = 0.17) changes approached significance. Center of mass vertical displacement (P < 0.001) but not leg compression (P > 0.05) increased with time. As a result, vertical stiffness decreased (P < 0.001) from the first to the last repetition, whereas leg stiffness changes across sprint trials were not significant (P > 0.05). Changes in vertical stiffness were correlated (r > 0.7; P < 0.001) with changes in stride frequency. When compared to 5-10 m, most of ground reaction force-related parameters were higher (P < 0.05) at 30-35 m, whereas contact time, stride frequency, vertical and leg stiffness were lower (P < 0.05). Vertical stiffness deteriorates when 40 m run-based sprints are repeated, which alters impact parameters. Maintaining faster stride frequencies through retaining higher vertical stiffness is a prerequisite to improve performance during repeated sprinting.
Resumo:
OBJECTIVES: This study aimed to determine adjustments in spring-mass model characteristics, plantar loading and foot mobility induced by an exhaustive run. DESIGN: Within-participants repeated measures. METHODS: Eleven highly-trained adolescent middle-distance runners ran to exhaustion on a treadmill at a constant velocity corresponding to 95% of velocity associated with VO₂max (17.8 ± 1.4 kmh(-1), time to exhaustion=8.8 ± 3.4 min). Contact time obtained from plantar pressure sensors was used to estimate spring-mass model characteristics, which were recorded (during 30 s) 1 min after the start and prior to exhaustion using pressure insoles. Foot mobility magnitude (a composite measure of vertical and medial-lateral mobility of the midfoot) was measured before and after the run. RESULTS: Mean contact area (foot to ground), contact time, peak vertical ground reaction force, centre of mass vertical displacement and leg compression increased significantly with fatigue, while flight time, leg stiffness and mean pressure decreased. Leg stiffness decreased because leg compression increased to a larger extent than peak vertical ground reaction forces. Step length, step frequency and foot mobility magnitude did not change at exhaustion. CONCLUSIONS: The stride pattern of adolescents when running on a treadmill at high constant velocity deteriorates near exhaustion, as evidenced by impaired leg-spring behaviour (leg stiffness) and altered plantar loading.
Resumo:
Terrestrial laser scanning (TLS) is one of the most promising surveying techniques for rockslope characterization and monitoring. Landslide and rockfall movements can be detected by means of comparison of sequential scans. One of the most pressing challenges of natural hazards is combined temporal and spatial prediction of rockfall. An outdoor experiment was performed to ascertain whether the TLS instrumental error is small enough to enable detection of precursory displacements of millimetric magnitude. This consists of a known displacement of three objects relative to a stable surface. Results show that millimetric changes cannot be detected by the analysis of the unprocessed datasets. Displacement measurement are improved considerably by applying Nearest Neighbour (NN) averaging, which reduces the error (1¿) up to a factor of 6. This technique was applied to displacements prior to the April 2007 rockfall event at Castellfollit de la Roca, Spain. The maximum precursory displacement measured was 45 mm, approximately 2.5 times the standard deviation of the model comparison, hampering the distinction between actual displacement and instrumental error using conventional methodologies. Encouragingly, the precursory displacement was clearly detected by applying the NN averaging method. These results show that millimetric displacements prior to failure can be detected using TLS.
Resumo:
Research into the biomechanical manifestation of fatigue during exhaustive runs is increasingly popular but additional understanding of the adaptation of the spring-mass behaviour during the course of strenuous, self-paced exercises continues to be a challenge in order to develop optimized training and injury prevention programs. This study investigated continuous changes in running mechanics and spring-mass behaviour during a 5-km run. 12 competitive triathletes performed a 5-km running time trial (mean performance: ̴17 min 30 s) on a 200 m indoor track. Vertical and anterior-posterior ground reaction forces were measured every 200 m by a 5-m long force platform system, and used to determine spring-mass model characteristics. After a fast start, running velocity progressively decreased (- 11.6%; P<0.001) in the middle part of the race before an end spurt in the final 400-600 m. Stride length (- 7.4%; P<0.001) and frequency (- 4.1%; P=0.001) decreased over the 25 laps, while contact time (+ 8.9%; P<0.001) and total stride duration (+ 4.1%; P<0.001) progressively lengthened. Peak vertical forces (- 2.0%; P<0.01) and leg compression (- 4.3%; P<0.05), but not centre of mass vertical displacement (+ 3.2%; P>0.05), decreased with time. As a result, vertical stiffness decreased (- 6.0%; P<0.001) during the run, whereas leg stiffness changes were not significant (+ 1.3%; P>0.05). Spring-mass behaviour progressively changes during a 5-km time trial towards deteriorated vertical stiffness, which alters impact and force production characteristics.
Resumo:
The purpose of this study was to estimate the energy cost of linear (EC) and vertical displacement (ECvert), mechanical efficiency and main stride parameters during simulated ski mountaineering at different speeds and gradients, to identify an optimal speed and gradient that maximizes performance. 12 subjects roller skied on a treadmill at three different inclines (10, 17 and 24 %) at three different speeds (approximately 70, 80 and 85 % of estimated peak heart rate). Energy expenditure was calculated by indirect calorimetry, while biomechanical parameters were measured with an inertial sensor-based system. At 10 % there was no significant change with speed in EC, ECvert and mechanical efficiency. At 17 and 24 % the fastest speed was significantly more economical. There was a significant effect of gradient on EC, ECvert and mechanical efficiency. The most economical gradient was the steepest one. There was a significant increase of stride frequency with speed. At steep gradients only, relative thrust phase duration decreased significantly, while stride length increased significantly with speed. There was a significant effect of gradient on stride length (decrease with steepness) and relative thrust phase duration (increase with steepness). A combination of a decreased relative thrust phase duration with increased stride length and frequency decreases ECvert. To minimize the energy expenditure to reach the top of a mountain and to optimize performance, ski-mountaineers should choose a steep gradient (~24 %) and, provided they possess sufficient metabolic scope, combine it with a fast speed (~6 km h(-1)).