943 resultados para Ventral hippocampus


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Alcohol-induced blackouts (ie, periods of anterograde amnesia) have received limited recent research attention. Objective: To examine the genetic epidemiology of lifetime blackouts and having had 3 or more blackouts in a year, including analyses controlling for the frequency of intoxication. Design, Setting, and Participants: Members of the young adult Australian Twin Register, a volunteer twin panel born between January 1, 1964, and December 3 1, 1971, were initially registered with the panel as children by their parents between 1980 and 1982. They underwent structured psychiatric telephone inter-views from February 1996 through September 2000. The current sample contains 2324 monozygotic and dizygotic twin pairs (mean [SDI age 29.9 [2.5] years) for whom both twins' responses were coded for blackout questions and for frequency of intoxication. Main Outcome Measure: Data on lifetime blackouts and having had 3 or more blackouts in a year were collected within an examination of the genetic epidemiology of alcoholism. Results: A lifetime history of blackouts was reported by 39.3% of women and 52.4% of men; 11.4% of women and 20.9% of men reported having had 3 or more blackouts in a year. The heritability of lifetime blackouts was 52.5% and that of having had 3 or more blackouts in a year was 57.8%. Models that controlled for frequency of intoxication found evidence of substantial genetic contribution unique to risk for the blackouts and a significant component of genetic risk shared with frequency of intoxication. Conclusions: The finding of a substantial genetic contribution to liability for alcohol-induced blackouts including a component of genetic loading shared with frequency of intoxication may offer important additional avenues to investigate susceptibility to alcohol-related problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuroscientists have a variety of perspectives with which to classify different parts of the brain. With the rise of genetic-based techniques such as optogenetics, it is increasingly important to identify whether a group of cells, defined by morphology, function or anatomical location possesses a distinct pattern of expression of one or more genetic promoters. This would allow for better ways to study of these genetically defined subpopulations of neurons. In this work, I present a theoretical discussion and threeexperimental studies in which this was the main question being addressed. Paper I discusses the issues involved in selecting a promoter to study structures and subpopulations in the Ventral Tegmental Area. Paper II characterizes a subpopulation of cells in the Ventral Tegmental Area that shares the expression of a promoter and is anatomically very restricted, and induces aversion when stimulated. Paper III utilizes a similar strategy to investigate a subpopulation in the subthalamic nucleus that expresses PITX2 and VGLUT2 which, when inactivated, causes hyperlocomotion. Paper IV exploits the fact that a previously identified group of cells in the ventral hippocampus expresses CHRNA2, and indicates that this population may be necessary and sufficient for the establishment of the theta rhythm (2-8 Hz) in the Local Field Potential of anesthetized mice. All of these studies were guided by the same strategy of characterizing and studying the role of a genetically defined subpopulation of cells, and they demonstrate the different ways in which this approach can generate new discoveries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stress during early development produces lasting effects on psychopathological outcomes. The impact of prior intermittent, physical stress (IPS) during early-adolescence (PD 22-33) on anxiety-related behaviour of female rats was analyzed in adulthood. After behavioural testing, serotonergic innervation was evaluated using immunohistochemistry for the serotonin transporter (SERT) in the medial prefrontal cortex (mPFC) and ventral hippocampus. Administration of IPS (i.e., water immersion, elevated platform, foot shock) in early adolescence increased rats’ anxiety-like behaviour in the elevated plus-maze but had no effects in the shock-probe burying test. In the social interaction test, IPS decreased social interaction, and this effect was driven by selective decreases in the duration of playfighting with no evident changes in contact or investigative behaviour. Selective stress-induced increases in SERT-immunoreactive axon density were found in the infralimbic (IL) subregion of the mPFC, but not in the cingulate or prelimbic (PL) subregions. IPS in early adolescence did not affect serotonergic innervation profiles in any sub-fields of the ventral hippocampus. The findings confirm and extend on earlier evidence that stress during early adolescence promotes the emergence of an anxious phenotype, and provide novel evidence that these effects may be mediated, at least in part, by increased serotonergic innervation of the IL mPFC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in several classes of embryonically-expressed transcription factor genes are associated with behavioral disorders and epilepsies. However, there is little known about how such genetic and neurodevelopmental defects lead to brain dysfunction. Here we present the characterization of an epilepsy syndrome caused by the absence of the transcription factor SOX1 in mice. In vivo electroencephalographic recordings from SOX1 mutants established a correlation between behavioral changes and cortical output that was consistent with a seizure origin in the limbic forebrain. In vitro intracellular recordings from three major forebrain regions, neocortex, hippocampus and olfactory (piriform) cortex (OC) showed that only the OC exhibits abnormal enhanced synaptic excitability and spontaneous epileptiform discharges. Furthermore, the hyperexcitability of the OC neurons was present in mutants prior to the onset of seizures but was completely absent from both the hippocampus and neocortex of the same animals. The local inhibitory GABAergic neurotransmission remained normal in the OC of SOX1-deficient brains, but there was a severe developmental deficit of OC postsynaptic target neurons, mainly GABAergic projection neurons within the olfactory tubercle and the nucleus accumbens shell. Our data show that SOX1 is essential for ventral telencephalic development and suggest that the neurodevelopmental defect disrupts local neuronal circuits leading to epilepsy in the SOX1-deficient mice

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Substantial heterogeneity remains across studies investigating changes in gray matter in schizophrenia. Differences in methodology, heterogeneous symptom patterns and symptom trajectories may contribute to inconsistent findings. To address this problem, we recently proposed to group patients by symptom dimensions, which map on the language, the limbic and the motor systems. The aim of the present study was to investigate whether patients with prevalent symptoms of emotional dysregulation would show structural neuronal abnormalities in the limbic system. METHOD: 43 right-handed medicated patients with schizophrenia were assessed with the Bern Psychopathology Scale (BPS). The patients and a control group of 34 healthy individuals underwent structural imaging at a 3T MRI scanner. Whole brain voxel-based morphometry (VBM) was compared between patient subgroups with different severity of emotional dysregulation. Group comparisons (comparison between patients with severe emotional dysregulation, patients with mild emotional dysregulation, patients with no emotional dysregulation and healthy controls) were performed using a one way ANOVA and ANCOVA respectively. RESULTS: Patients with severe emotional dysregulation had significantly decreased gray matter density in a large cluster including the right ventral striatum and the head of the caudate compared to patients without emotional dysregulation. Comparing patients with severe emotional dysregulation and healthy controls, several clusters of significant decreased GM density were detected in patients, including the right ventral striatum, head of the caudate, left hippocampus, bilateral thalamus, dorsolateral prefrontal and orbitofrontal cortex. The significant effect in the ventral striatum was lost when patients with and without emotional dysregulation were pooled and compared with controls. DISCUSSION: Decreased gray matter density in a large cluster including the right ventral striatum was associated with severe symptoms of emotional dysregulation in patients with schizophrenia. The ventral striatum is an important part of the limbic system, and was indicated to be involved in the generation of incentive salience and psychotic symptoms. Only patients with severe emotional dysregulation had decreased gray matter in several brain structures associated with emotion and reward processing compared to healthy controls. The results support the hypothesis that grouping patients according to specific clinical symptoms matched to the limbic system allows identifying patient subgroups with structural abnormalities in the limbic network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programmed cell death (PCD) and progenitor cell generation (of glial and in some brain areas also neuronal fate) in the CNS is an active process throughout life and is generally not associated with gliosis which means that PCD can be pathologically silent. The striking discovery that progenitor cell generation (of glial and in some brain areas neuronal fate) is widespread in the adult CNS (especially the hippocampus) suggest a much more dynamic scenario than previously thought and transcends the dichotomy between neurodevelopmental and neurodegenerative models of schizophrenia and related disorders. We suggest that the regulatory processes that control the regulation of PCD and the generation of progenitor cells may be disturbed in the early phase of psychotic disorders underpinning a disconnectivity syndrom at the onset of clinically overt disorders. An ongoing 1H-MRS study of the anterior hippocampus at 3 Tesla in mostly drug-naive first-episode psychosis patients suggests no change in NAA, but significant increases in myo-inositol and lactate. The data suggests that neuronal integrity in the anterior hippocampus is still intact at the early stage of illness or mainly only functionally impaired. However the increase in lactate and myo-inositol may reflect a potential disturbance of generation and PCD of progenitor cells (of glial and in selected brain areas also neuronal fate) at the onset of psychosis. If true the use of neuroprotective agents such as lithium or eicosapentaenoic acid (which inhibit PCD and support cell generation)in the early phase of psychotic disorders may be a potent treatment avenue to explore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have implicated the hypocretin/orexinergic system in reward-seeking behavior. Almorexant, a dual orexin/hypocretin R1 and R2 receptor antagonist, has proven effective in preclinical studies in promoting sleep in animal models and was in Phase III clinical trials for sleep disorders. The present study combines behavioral assays with in vitro biochemical and electrophysiological techniques to elucidate the role of almorexant in ethanol and sucrose intake. Using an operant self-administration paradigm, we demonstrate that systemic administration of almorexant decreased operant selfadministration of both 20% ethanol and 5% sucrose. We further demonstrate that intraventral tegmental area (VTA) infusions, but not intra substantia nigra infusions, of almorexant reduced ethanol self-administration. Extracellular recordings performed in VTA neurons revealed that orexin-A increased firing and this enhancement of firing was blocked by almorexant. The results demonstrate that orexin/hypocretin receptors in distinct brain regions regulate ethanol and sucrose mediated behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human genetic association studies have shown gene variants in the α5 subunit of the neuronal nicotinic receptor (nAChR) influence both ethanol and nicotine dependence. The α5 subunit is an accessory subunit that facilitates α4* nAChRs assembly in vitro. However, it is unknown whether this occurs in the brain, as there are few research tools to adequately address this question. As the α4*-containing nAChRs are highly expressed in the ventral tegmental area (VTA) we assessed the molecular, functional and pharmacological roles of α5 in α4*-containing nAChRs in the VTA. We utilized transgenic mice α5+/+(α4YFP) and α5-/-(α4YFP) that allow the direct visualization and measurement of α4-YFP expression and the effect of the presence (α5+/+) and absence of α5 (-/-) subunit, as the antibodies for detecting the α4* subunits of the nAChR are not specific. We performed voltage clamp electrophysiological experiments to study baseline nicotinic currents in VTA dopaminergic neurons. We show that in the presence of the α5 subunit, the overall expression of α4 subunit is increased significantly by 60% in the VTA. Furthermore, the α5 subunit strengthens baseline nAChR currents, suggesting the increased expression of α4* nAChRs to be likely on the cell surface. While the presence of the α5 subunit blunts the desensitization of nAChRs following nicotine exposure, it does not alter the amount of ethanol potentiation of VTA dopaminergic neurons. Our data demonstrates a major regulatory role for the α5 subunit in both the maintenance of α4*-containing nAChRs expression and in modulating nicotinic currents in VTA dopaminergic neurons. Additionally, the α5α4* nAChR in VTA dopaminergic neurons regulates the effect of nicotine but not ethanol on currents. Together, the data suggest that the α5 subunit is critical for controlling the expression and functional role of a population of α4*-containing nAChRs in the VTA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe recent biologically-inspired mapping research incorporating brain-based multi-sensor fusion and calibration processes and a new multi-scale, homogeneous mapping framework. We also review the interdisciplinary approach to the development of the RatSLAM robot mapping and navigation system over the past decade and discuss the insights gained from combining pragmatic modelling of biological processes with attempts to close the loop back to biology. Our aim is to encourage the pursuit of truly interdisciplinary approaches to robotics research by providing successful case studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Syrian hamster, Mesocricetus auratus, was first used in laboratory experiments some fifty years ago in the Middle East, from animals captured in the wild. 1 Since then the Syrian hamster has been domesticated and used extensively in laboratory studies of motivation, includuing reproduction, feeding, aggression and circadian behaviors. 2 In comparison to the rat, the male Syrian hamster is a solitary animal known for its territorial aggression, photoperiodic mating and hoarding behaviors. Many neural circuits controlling reproductive behaviors are now known. 3 While these motivated behaviors have been demonstrated to be regulated by endocrine status there is increasing evidence that dopamine within the nucleus accumbens conveys the rewarding tone of sexual motivation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subiculum is the major output region of the hippocampal formation. We have studied pyramidal neurons in slices of rat ventral subiculum to determine if there is a correlation between nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activity and electrophysiological phenotype. The majority of NADPH-d-positive pyramidal neurons were found in the superficial cell layer (i.e. nearest to the hippocampal fissure) of the subiculum and appreciable NADPH-d activity was absent from pyramidal neurons in area CA1. This distribution of NADPH-d activity was mimicked by that of immunoreactivity for the neuronal isoform of nitric oxide synthase. Subicular pyramidal neurons were classified, electrophysiologically, as intrinsically burst-firing or regular spiking. After electrophysiological characterization, neurons were filled with Neurobiotin and revealed using fluorescence immunocytochemistry. The slices containing these neurons were also processed for NADPH-d. NADPH-d activity was found in six out of eight regular spiking neurons but was not found in any of 13 intrinsically burst-firing neurons (P=0.0008, Fisher's Exact Test). We conclude that in rat ventral subiculum, NADPH-d activity is present in a proportion of pyramidal neurons and indicates the presence of the neuronal isoform of nitric oxide synthase. Furthermore, amongst pyramidal neurons, NADPH-d activity is distributed preferentially to those with the regular spiking phenotype. The distribution of regular spiking neurons suggests that they may not be present to the same extent in all subicular output pathways. Thus, the actions of nitric oxide may be relatively specific to particular hippocampal connections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experience of stress is commonly implicated in models of the onset of psychotic disorders. However, prospective studies investigating associations between biological markers of stress and the emergence of psychotic disorders are limited and inconclusive. One biological system proposed as the link between the psychological experience of stress and the development of psychosis is the Hypothalamic-Pituitary-Adrenal (HPA) axis. This paper summarizes and discusses evidence supporting a role for HPA-axis dysfunction in the early phase of schizophrenia and related disorders. METHOD A selective review of psychiatric and psychological research on stress, coping, HPA-axis, the hippocampus and psychotic disorders was performed, with a particular focus on the relationship between HPA-axis dysfunction and the onset of psychotic disorders. RESULTS Individual strands of past research have suggested that the HPA-axis is dysfunctional in at least some individuals with established psychotic disorders; that the hippocampus is an area of the brain that appears to be implicated in the onset and maintenance of psychotic disorders; and that an increase in the experience of stress precedes the onset of a psychotic episode in some individuals. Models of the onset and maintenance of psychotic disorders that link these individual strands of research and strategies for examining these models are proposed in this paper. CONCLUSIONS The current literature provides some evidence that the onset of psychotic disorders may be associated with a higher rate of stress and changes to the hippocampus. It is suggested that future research should investigate whether a relationship exists between psychological stress, HPA-axis functioning and the hippocampus in the onset of these disorders. Longitudinal assessment of these factors in young people at 'ultra' high risk of psychosis and first-episode psychosis cohorts may enhance understanding of the possible interaction between them in the early phases of illness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distinct endogenous network events, generated independently of sensory input, are a general feature of various structures of the immature central nervous system. In the immature hippocampus, these type of events are seen as "giant depolarizing potentials" (GDPs) in intracellular recordings in vitro. GABA, the major inhibitory neurotransmitter of the adult brain, has a depolarizing action in immature neurons, and GDPs have been proposed to be driven by GABAergic transmission. Moreover, GDPs have been thought to reflect an early pattern that disappears during development in parallel with the maturation of hyperpolarizing GABAergic inhibition. However, the adult hippocampus in vivo also generates endogenous network events known as sharp (positive) waves (SPWs), which reflect synchronous discharges of CA3 pyramidal neurons and are thought to be involved in cognitive functions. In this thesis, mechanisms of GDP generation were studied with intra- and extracellular recordings in the neonatal rat hippocampus in vitro and in vivo. Immature CA3 pyramidal neurons were found to generate intrinsic bursts of spikes and to act as cellular pacemakers for GDP activity whereas depolarizing GABAergic signalling was found to have a temporally non-patterned facilitatory role in the generation of the network events. Furthermore, the data indicate that the intrinsic bursts of neonatal CA3 pyramidal neurons and, consequently, GDPs are driven by a persistent Na+ current and terminated by a slow Ca2+-dependent K+ current. Gramicidin-perforated patch recordings showed that the depolarizing driving force for GABAA receptor-mediated actions is provided by Cl- uptake via the Na-K-C1 cotransporter, NKCC1, in the immature CA3 pyramids. A specific blocker of NKCC1, bumetanide, inhibited SPWs and GDPs in the neonatal rat hippocampus in vivo and in vitro, respectively. Finally, pharmacological blockade of the GABA transporter-1 prolonged the decay of the large GDP-associated GABA transients but not of single postsynaptic GABAA receptor-mediated currents. As a whole the data in this thesis indicate that the mechanism of GDP generation, based on the interconnected network of bursting CA3 pyramidal neurons, is similar to that involved in adult SPW activity. Hence, GDPs do not reflect a network pattern that disappears during development but they are the in vitro counterpart of neonatal SPWs.